相移键控
星座图
计算机科学
调制(音乐)
算法
人工智能
正交调幅
键控
模式识别(心理学)
电子工程
电信
工程类
误码率
物理
解码方法
声学
作者
Kaiyuan Jiang,Jiawei Zhang,Haibin Wu,Aili Wang,Yuji Iwahori
摘要
The modulation recognition of digital signals under non-cooperative conditions is one of the important research contents here. With the rapid development of artificial intelligence technology, deep learning theory is also increasingly being applied to the field of modulation recognition. In this paper, a novel digital signal modulation recognition algorithm is proposed, which has combined the InceptionResNetV2 network with transfer adaptation, called InceptionResnetV2-TA. Firstly, the received signal is preprocessed and generated the constellation diagram. Then, the constellation diagram is used as the input of the InceptionResNetV2 network to identify different kinds of signals. Transfer adaptation is used for feature extraction and SVM classifier is used to identify the modulation mode of digital signal. The constellation diagram of three typical signals, including Binary Phase Shift Keying(BPSK), Quadrature Phase Shift Keying(QPSK) and 8 Phase Shift Keying(8PSK), was made for the experiments. When the signal-to-noise ratio(SNR) is 4dB, the recognition rates of BPSK, QPSK and 8PSK are respectively 1.0, 0.9966 and 0.9633 obtained by InceptionResnetV2-TA, and at the same time, the recognition rate can be 3% higher than other algorithms. Compared with the traditional modulation recognition algorithms, the experimental results show that the proposed algorithm in this paper has a higher accuracy rate for digital signal modulation recognition at low SNR.
科研通智能强力驱动
Strongly Powered by AbleSci AI