In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light

光电流 光致发光 兴奋剂 化学 纳米线 氧气 空位缺陷 可见光谱 电子顺磁共振 电极 光化学 碳纤维 带隙 纳米技术 光电子学 材料科学 结晶学 物理化学 复合数 物理 复合材料 有机化学 核磁共振
作者
Shanpeng Li,Chunlei Liu,Ping Chen,Wenying Lv,Guoguang Liu
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:382: 212-227 被引量:37
标识
DOI:10.1016/j.jcat.2019.12.030
摘要

Oxygen vacancy was considered to act as electron scavengers, delaying electron-hole pair recombination for their critical impacts on the electronic-band structural modulation and optical absorption of a semiconductor. However, the generation and stabilization of oxygen vacancies (Vo) remains a considerable challenge. Herein, a N-doped carbon dots/Vo-rich TiO2 nanowire array (NCDs/TiO2 NA-Vo) photoelectrode with a stable oxygen vacancy layer in TiO2 energy band was constructed successfully by doping with NCDs. This optimized NCDs/TiO2 NA-Vo photoelectrode exhibited high activity and durability with a degradation reaction constant that was ∼ two and three fold higher than that of TiO2 NA-Vo and TiO2 NA electrodes, respectively, and maintained a high degradation efficiency after eight consecutive degradation cycles. Moreover, the NCDs/TiO2 NA-Vo photoelectrode demonstrated a photocurrent density of 0.56 mA cm−2, which was more than three times that of TiO2 NA electrode. These excellent visible light-driven photoelectrocatalysis (PEC) activities could be attributed to the stabilized and regulated oxygen vacancy layer induced by NCDs, which further accelerated the interfacial charge separation to generate more free radicals (e.g., OH, O2−, and 1O2) confirmed by electron-spin resonance (ESR) and Photoluminescence Spectra (PL). Our work provides an effective strategy to regulate the defected TiO2 electrodes in the applications of visible light-driven wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扬帆起航发布了新的文献求助10
1秒前
蜜桃小丸子完成签到 ,获得积分10
3秒前
传奇3应助yang采纳,获得10
4秒前
兮兮完成签到,获得积分10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
yohu应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
喵小薇完成签到,获得积分20
9秒前
9秒前
11秒前
铲铲完成签到,获得积分10
11秒前
12秒前
pluto应助优美飞薇采纳,获得30
12秒前
玛格丽特完成签到,获得积分20
13秒前
迅速如柏完成签到,获得积分20
13秒前
酷波er应助momo采纳,获得10
13秒前
优雅的箴发布了新的文献求助10
15秒前
16秒前
DLY677完成签到,获得积分10
18秒前
wangtingyu发布了新的文献求助10
19秒前
迅速如柏发布了新的文献求助10
19秒前
儒雅的香之完成签到,获得积分10
20秒前
20秒前
Siney发布了新的文献求助10
22秒前
albertchan完成签到,获得积分10
22秒前
yang发布了新的文献求助10
22秒前
斯文败类应助玛格丽特采纳,获得10
22秒前
Benhnhk21完成签到,获得积分10
23秒前
格格巫完成签到 ,获得积分10
24秒前
24秒前
李健的小迷弟应助wangdong采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115