电导率
质子
加合物
质子输运
材料科学
基础(拓扑)
大气温度范围
化学
分析化学(期刊)
有机化学
物理化学
数学
量子力学
物理
数学分析
气象学
作者
Xiuwei Sun,Shumei Liu,Shan Zhang,Tian‐Yi Dang,Hong‐Rui Tian,Ying Lü,Shuxia Liu
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2020-01-08
卷期号:3 (1): 1242-1248
被引量:27
标识
DOI:10.1021/acsaem.9b02381
摘要
Almost all proton-conducting materials display poor conductivity at subzero temperatures, which significantly limits their application in cold regions. Thus, effective strategies to achieve high proton conductivity in a wide range from subzero to medium temperatures (−40 to 85 °C) need to be developed. Herein, we prepared proton-conductive materials by encapsulating the acid–base adduct based on Keggin-type H3PW12O40 (HPW) and aminoethanesulfonic acid (C2H7O3NS, HSN) in the linear channels of SBA-15 (named HPW-HSN@SBA-15). The result is the same as we expected: HPW-HSN@SBA-15 exhibits high proton conductivity over a wide temperature range (−40 to 85 °C). The proton conductivity of 75 wt % HPW-HSN@SBA-15 (3HPW-HSN@SBA-15) reaches 0.16 S cm–1 at 85 °C, 97% relative humidity (RH), and 6.8 × 10–5 S cm–1 at −40 °C. The excellent proton conductivity at subzero temperature of HPW-HSN@SBA-15 is mainly attributed to the ultrafast proton transfer with low energy barrier between proton donor (acid group) and proton acceptor (base group) in acid–base adduct without the attendance of water. Furthermore, the proton conductivity cycle test of 3HPW-HSN@SBA-15 demonstrates its good durability and stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI