Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales

高光谱成像 天蓬 精准农业 数学 红边 稳健性(进化) 环境科学 遥感 农学 植物 生物 生态学 地理 生物化学 基因 农业
作者
Wanxue Zhu,Zhigang Sun,Ting Yang,Jing Li,Jinbang Peng,Kangying Zhu,Shiji Li,Huarui Gong,Yun Lyu,Binbin Li,Xiaohan Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:178: 105786-105786 被引量:48
标识
DOI:10.1016/j.compag.2020.105786
摘要

Leaf chlorophyll content (LCC) is a crucial indicator of nutrition in crop plants and can be applied to assess the adequacy of nitrogen (N) fertilizer for crops while reducing N losses to farmland. This study estimated the LCC of maize and wheat, and comprehensively examined the effects of the spectral information and spatial scale of unmanned aerial vehicle (UAV) imagery, and the effects of phenotype and phenology on LCC estimation. A Cubert S185 hyperspectral camera onboard a DJI M600 Pro was used to conduct six flight missions over a long-term experimental field with five N applications (0, 70, 140, 210, and 280 kg N ha−1) and two irrigation levels (60% and 80% field water capacity) during the growing seasons of wheat and maize in 2019. Four regression algorithms, that is, multi-variable linear regression, random forest, backpropagation neural network, and support vector machine, were used for modeling. Leaf, canopy, and hybrid scale hyperspectral variables (H-variables) were used as inputs for the statistical LCC models. Optimal H-variables for modeling were determined by Pearson correlation filtering followed by a recursive feature elimination procedure. The results showed that (1) H-variables at the canopy- and leaf-scales were appropriate for wheat and maize LCC estimation, respectively; (2) the robustness of LCC estimation was in the order of the flowering stage > heading stage > grain filling stage for wheat and early grain filling stage > flowering stage > jointing stage for maize; (3) the reflectance of the red edge, green, and blue bands were the most important inputs for LCC modeling, and the optimal vegetation indices differed for the various growth stages and crops; and (4) all four algorithms maintained an acceptable accuracy with respect to LCC estimation, although random forest and support vector machine were slightly better. This study is valuable for the design of appropriate schemes for the spectral and scale issues of UAV sensors for LCC estimation regarding specific crop phenotype and phenology periods, and further boosts the applications of UAVs in precision agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助Cx330采纳,获得10
1秒前
领导范儿应助李桢采纳,获得10
2秒前
www发布了新的文献求助10
2秒前
2秒前
搬砖人完成签到,获得积分10
2秒前
Mao完成签到,获得积分20
2秒前
3秒前
niuniu顺利毕业完成签到 ,获得积分10
3秒前
3秒前
feng应助liying采纳,获得30
5秒前
wang完成签到 ,获得积分10
5秒前
倦鸟余花完成签到,获得积分10
5秒前
kyJYbs完成签到,获得积分10
5秒前
5秒前
机灵寒烟完成签到,获得积分10
7秒前
wwy应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
楠枫应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得30
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
残剑月应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
残剑月应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
希望天下0贩的0应助meng采纳,获得10
7秒前
无花果应助科研通管家采纳,获得30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
9秒前
CodeCraft应助熊熊冲冲冲采纳,获得10
9秒前
limin完成签到,获得积分10
10秒前
GU完成签到,获得积分10
11秒前
贪玩树叶完成签到,获得积分10
11秒前
小小油应助头哥采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950