Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales

高光谱成像 天蓬 精准农业 数学 红边 稳健性(进化) 环境科学 遥感 农学 植物 生物 生态学 地理 农业 生物化学 基因
作者
Wanxue Zhu,Zhigang Sun,Ting Yang,Jing Li,Jinbang Peng,Kangying Zhu,Shiji Li,Huarui Gong,Yun Lyu,Binbin Li,Xiaohan Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:178: 105786-105786 被引量:48
标识
DOI:10.1016/j.compag.2020.105786
摘要

Leaf chlorophyll content (LCC) is a crucial indicator of nutrition in crop plants and can be applied to assess the adequacy of nitrogen (N) fertilizer for crops while reducing N losses to farmland. This study estimated the LCC of maize and wheat, and comprehensively examined the effects of the spectral information and spatial scale of unmanned aerial vehicle (UAV) imagery, and the effects of phenotype and phenology on LCC estimation. A Cubert S185 hyperspectral camera onboard a DJI M600 Pro was used to conduct six flight missions over a long-term experimental field with five N applications (0, 70, 140, 210, and 280 kg N ha−1) and two irrigation levels (60% and 80% field water capacity) during the growing seasons of wheat and maize in 2019. Four regression algorithms, that is, multi-variable linear regression, random forest, backpropagation neural network, and support vector machine, were used for modeling. Leaf, canopy, and hybrid scale hyperspectral variables (H-variables) were used as inputs for the statistical LCC models. Optimal H-variables for modeling were determined by Pearson correlation filtering followed by a recursive feature elimination procedure. The results showed that (1) H-variables at the canopy- and leaf-scales were appropriate for wheat and maize LCC estimation, respectively; (2) the robustness of LCC estimation was in the order of the flowering stage > heading stage > grain filling stage for wheat and early grain filling stage > flowering stage > jointing stage for maize; (3) the reflectance of the red edge, green, and blue bands were the most important inputs for LCC modeling, and the optimal vegetation indices differed for the various growth stages and crops; and (4) all four algorithms maintained an acceptable accuracy with respect to LCC estimation, although random forest and support vector machine were slightly better. This study is valuable for the design of appropriate schemes for the spectral and scale issues of UAV sensors for LCC estimation regarding specific crop phenotype and phenology periods, and further boosts the applications of UAVs in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未完完成签到 ,获得积分10
2秒前
xinlixi完成签到,获得积分10
3秒前
小佳完成签到,获得积分10
3秒前
3秒前
3秒前
Judith发布了新的文献求助10
4秒前
7秒前
8秒前
8秒前
10秒前
Jane发布了新的文献求助10
12秒前
鳗鱼怀蕊完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助寒冷妙梦采纳,获得10
13秒前
15秒前
16秒前
刘汐完成签到,获得积分10
17秒前
hochorsin发布了新的文献求助10
17秒前
17秒前
张zz发布了新的文献求助10
18秒前
holmes发布了新的文献求助20
19秒前
完美笙完成签到 ,获得积分20
19秒前
落霞与孤鹜齐飞完成签到,获得积分10
19秒前
21发布了新的文献求助10
20秒前
喃义完成签到,获得积分10
20秒前
Jane完成签到,获得积分20
21秒前
辣个男子发布了新的文献求助10
23秒前
子卿应助小佳采纳,获得10
23秒前
FashionBoy应助Pluto采纳,获得10
24秒前
倪倪完成签到,获得积分10
24秒前
24秒前
24秒前
CipherSage应助无私千风采纳,获得10
25秒前
今天要睡觉完成签到,获得积分20
26秒前
冰糖发布了新的文献求助10
27秒前
27秒前
Mango发布了新的文献求助10
28秒前
一叶舟发布了新的文献求助10
28秒前
胡桃夹馍发布了新的文献求助10
29秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237