癫痫
基因敲除
体内
流式细胞术
细胞凋亡
转染
化学
分子生物学
细胞生物学
生物
神经科学
生物化学
基因
遗传学
作者
Mengwen Zhao,Wen-Jie Qiu,Pu Yang
标识
DOI:10.1016/j.eplepsyres.2020.106476
摘要
Epilepsy is a one of the most frequent serious neurological disorders characterized by enduring and unprovoked seizures. The treatments to epilepsy are very limited and many patients are even resistant to current medications due to the elusive pathogenesis. Here, we sought to investigate the functions of lncRNA SNHG1 and miR-154-5p in epilepsy. We employed both in vivo mouse model and in vitro cell model to study epilepsy. H&E staining and Nissl staining were used to examine the morphology of hippocampus and measure neuronal injury, respectively. TUNEL staining and flow cytometry were performed to determine cell apoptosis. Caspase-3 activity assay kit was used to assess caspase-3 activity. RT-qPCR and western blot were conducted to measure the levels of SNHG1, miR-154-5p, TLR5, and SP1, respectively. Dual luciferase reporter assay was employed to validate the binding relationship of SNHG1/miR-154-5p and miR-154-5p/TLR5. ChIP assay was performed to confirm the transcriptional regulation of SP1 on SNHG1. Elevated SNHG1 and decreased miR-154-5p were observed in both in vivo mouse model and in vitro cell model of epilepsy. Knockdown of SNHG1 or transfection with miR-154-5p mimics significantly ameliorated Mg2+ free-induced neuronal injury in SH-SY5Y cells. SNHG1 acted as a sponge of miR-154-5p. Moreover, SNHG1 promoted neuronal injury via acting as a miR-154-5p sponge to disinhibit TLR5. Additionally, SP1 activated the transcriptional activity of SNHG1. In summary, SP1 transcriptionally activated-SNHG1 contributes to the development of epilepsy via directly regulating miR-154-5p/TLR5 axis, which provides novel targets in treatment of epilepsy.
科研通智能强力驱动
Strongly Powered by AbleSci AI