Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source

医学 心房颤动 优势比 内科学 心脏病学 冲程(发动机) 置信区间 星团(航天器) 栓塞性中风 聚类分析 缺血性中风 机器学习 工程类 机械工程 程序设计语言 缺血 计算机科学
作者
George Ntaios,Shih‐Feng Weng,Kalliopi Perlepe,Ralph Kwame Akyea,Laura Condon,Dimitris Lambrou,Gaia Sirimarco,Davide Strambo,Ashraf Eskandari,Efstathia Karagkiozi,Anastasia Vemmou,Eleni Korompoki,Efstathios Manios,Konstantinos Makaritsis,K. Vemmos,Patrik Michel
出处
期刊:European Journal of Neurology [Wiley]
卷期号:28 (1): 192-201 被引量:23
标识
DOI:10.1111/ene.14524
摘要

Hierarchical clustering, a common 'unsupervised' machine-learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data-driven machine-learning method, and explored variation in stroke recurrence between clusters.We used a hierarchical k-means clustering algorithm on patients' baseline data, which assigned each individual into a unique clustering group, using a minimum-variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer.Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64-4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43-3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster.This data-driven machine-learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q22发布了新的文献求助10
1秒前
2秒前
2秒前
小雨dida发布了新的文献求助10
2秒前
12366666完成签到,获得积分10
3秒前
完美世界应助wztin采纳,获得10
4秒前
qqq发布了新的文献求助10
6秒前
fzd完成签到,获得积分10
7秒前
8R60d8应助Viva采纳,获得10
7秒前
10秒前
阿泽完成签到 ,获得积分10
10秒前
11秒前
EnjieYu发布了新的文献求助10
13秒前
14秒前
14秒前
wztin发布了新的文献求助10
16秒前
naturehome发布了新的文献求助10
16秒前
gty发布了新的文献求助10
16秒前
17秒前
17秒前
脑洞疼应助汤圆采纳,获得30
19秒前
Q22发布了新的文献求助10
19秒前
浩铭完成签到,获得积分10
22秒前
ll应助mimi采纳,获得10
23秒前
23秒前
26秒前
NexusExplorer应助xiaohhh采纳,获得10
26秒前
无花果应助羽化成仙采纳,获得10
27秒前
大模型应助Li猪猪采纳,获得10
27秒前
28秒前
wztin完成签到,获得积分10
28秒前
29秒前
咔咔完成签到 ,获得积分10
29秒前
vikonk发布了新的文献求助10
30秒前
31秒前
赘婿应助McCallistery采纳,获得10
31秒前
汉堡包应助naturehome采纳,获得10
31秒前
32秒前
彭苗苗发布了新的文献求助10
33秒前
zou发布了新的文献求助10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305998
求助须知:如何正确求助?哪些是违规求助? 2939884
关于积分的说明 8494766
捐赠科研通 2614093
什么是DOI,文献DOI怎么找? 1427957
科研通“疑难数据库(出版商)”最低求助积分说明 663212
邀请新用户注册赠送积分活动 648037