Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source

医学 心房颤动 优势比 内科学 心脏病学 冲程(发动机) 置信区间 星团(航天器) 栓塞性中风 聚类分析 缺血性中风 机器学习 工程类 机械工程 程序设计语言 缺血 计算机科学
作者
George Ntaios,Shih‐Feng Weng,Kalliopi Perlepe,Ralph Kwame Akyea,Laura Condon,Dimitris Lambrou,Gaia Sirimarco,Davide Strambo,Ashraf Eskandari,Efstathia Karagkiozi,Anastasia Vemmou,Eleni Korompoki,Efstathios Manios,Konstantinos Makaritsis,K. Vemmos,Patrik Michel
出处
期刊:European Journal of Neurology [Wiley]
卷期号:28 (1): 192-201 被引量:23
标识
DOI:10.1111/ene.14524
摘要

Hierarchical clustering, a common 'unsupervised' machine-learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data-driven machine-learning method, and explored variation in stroke recurrence between clusters.We used a hierarchical k-means clustering algorithm on patients' baseline data, which assigned each individual into a unique clustering group, using a minimum-variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer.Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64-4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43-3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster.This data-driven machine-learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼煎蛋完成签到,获得积分10
刚刚
2秒前
2秒前
maggiexjl完成签到,获得积分10
2秒前
三木足球完成签到,获得积分10
2秒前
871624521发布了新的文献求助10
3秒前
4秒前
6秒前
刘雨森完成签到,获得积分10
7秒前
潘盼盼发布了新的文献求助10
8秒前
10秒前
like完成签到 ,获得积分10
11秒前
SciGPT应助mango_采纳,获得10
13秒前
猪猪hero应助孟__采纳,获得10
13秒前
加快步伐发布了新的文献求助10
14秒前
丘比特应助汪汪采纳,获得10
16秒前
18秒前
彭于晏应助SCboxamn采纳,获得10
18秒前
18秒前
20秒前
小猪发布了新的文献求助10
23秒前
SYLH应助pengyuyan采纳,获得10
23秒前
鲸鱼不是鱼完成签到,获得积分10
23秒前
张雷应助MANGMANG采纳,获得10
25秒前
25秒前
Alicia发布了新的文献求助10
26秒前
26秒前
Hello应助文静沛萍采纳,获得10
27秒前
28秒前
奋斗藏花完成签到,获得积分10
28秒前
fan发布了新的文献求助10
29秒前
汪汪发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
饭ff发布了新的文献求助10
31秒前
31秒前
ann发布了新的文献求助10
31秒前
核桃应助五月采纳,获得10
35秒前
SCboxamn发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341