Detection of Natural Gas Leakages Using a Laser-Based Methane Sensor and UAV

天然气 甲烷 环境科学 管道运输 管道(软件) 探测器 石油工程 遥感 泄漏 甲烷气体 海洋工程 计算机科学 气体泄漏 工程类 环境工程 地质学 废物管理 电信 化学 生物 有机化学 程序设计语言 生态学
作者
Sebastian Iwaszenko,Piotr Kalisz,Marcin Słota,Andrzej Rudzki
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (3): 510-510 被引量:63
标识
DOI:10.3390/rs13030510
摘要

The safety of the gas transmission infrastructure is one of the main concerns for infrastructure operating companies. Common gas pipelines’ tightness control is tedious and time-consuming. The development of new methods is highly desirable. This paper focuses on the applications of air-borne methods for inspections of the natural gas pipelines. The main goal of this study is to test an unmanned aerial vehicle (UAV), equipped with a remote sensing methane detector, for natural gas leak detection from the pipeline network. Many studies of the use of the UAV with laser detectors have been presented in the literature. These studies include experiments mainly on the artificial methane sources simulating gas leaks. This study concerns the experiments on a real leakage of natural gas from a pipeline. The vehicle at first monitored the artificial source of methane to determine conditions for further experiments. Then the experiments on the selected section of the natural gas pipelines were conducted. The measurement data, along with spatial coordinates, were collected and analyzed using machine learning methods. The analysis enabled the identification of groups of spatially correlated regions which have increased methane concentrations. Investigations on the flight altitude influence on the accuracy of measurements were also carried out. A range of between 4 m and 15 m was depicted as optimal for data collection in the natural gas pipeline inspections. However, the results from the field experiments showed that areas with increased methane concentrations are significantly more difficult to identify, though they are still noticeable. The experiments also indicate that the lower altitudes of the UAV flights should be chosen. The results showed that UAV monitoring can be used as a tool for the preliminary selection of potentially untight gas pipeline sections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
风趣的亦巧完成签到,获得积分10
刚刚
刚刚
1秒前
感谢hsadu转发科研通微信,获得积分50
1秒前
2秒前
tangxiang发布了新的文献求助10
2秒前
2秒前
领导范儿应助Jasen采纳,获得30
3秒前
感谢自由宛筠转发科研通微信,获得积分50
3秒前
4秒前
4秒前
upsoar发布了新的文献求助10
5秒前
SciGPT应助优雅惜雪采纳,获得10
5秒前
5秒前
感谢刘欣欣转发科研通微信,获得积分50
6秒前
汉堡包应助zdx12324采纳,获得10
6秒前
6秒前
Orma发布了新的文献求助20
7秒前
琳琳完成签到,获得积分10
7秒前
勾栏听曲发布了新的文献求助10
7秒前
小鲤鱼关注了科研通微信公众号
7秒前
感谢hugo转发科研通微信,获得积分50
9秒前
大模型应助Twikky采纳,获得10
9秒前
lxr8900发布了新的文献求助10
9秒前
zzzwwz发布了新的文献求助10
11秒前
勾栏听曲完成签到,获得积分10
12秒前
自信寄灵完成签到 ,获得积分10
12秒前
ivVvyyy完成签到 ,获得积分10
13秒前
XLtx完成签到,获得积分10
13秒前
huan完成签到,获得积分10
14秒前
八戒的梦想完成签到,获得积分10
15秒前
15秒前
15秒前
天真的千柔完成签到,获得积分10
16秒前
LSY发布了新的文献求助10
16秒前
17秒前
惊嵐应助Anthonyhhh采纳,获得20
17秒前
李爱国应助ccc采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928