清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning reveals a PD-L1–independent prediction of response to immunotherapy of non-small cell lung cancer by gene expression context

背景(考古学) 免疫疗法 肺癌 肿瘤科 医学 比例危险模型 危险系数 特征选择 内科学 PD-L1 癌症 免疫组织化学 癌症研究 机器学习 生物 计算机科学 置信区间 古生物学
作者
Marcel Wiesweg,Fabian Mairinger,Henning Reis,Moritz Goetz,Jens Kollmeier,Daniel Misch,Susann Stephan-Falkenau,Thomas Mairinger,Robert Walter,Thomas Hager,Martin Metzenmacher,Wilfried Eberhardt,Gregor Zaun,Johannes Köster,Martin Stuschke,Clemens Aigner,Kaid Darwiche,Kurt Werner Schmid,Sven Rahmann,Martin Schüler
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:140: 76-85 被引量:38
标识
DOI:10.1016/j.ejca.2020.09.015
摘要

Objective Current predictive biomarkers for PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1)-directed immunotherapy in non-small cell lung cancer (NSCLC) mostly focus on features of tumour cells. However, the tumour microenvironment and immune context are expected to play major roles in governing therapy response. Against this background, we set out to apply context-sensitive feature selection and machine learning approaches on expression profiles of immune-related genes in diagnostic biopsies of patients with stage IV NSCLC. Methods RNA expression levels were determined using the NanoString nCounter platform in formalin-fixed paraffin-embedded tumour biopsies obtained during the diagnostic workup of stage IV NSCLC from two thoracic oncology centres. A 770-gene panel covering immune-related genes and control genes was used. We applied supervised machine learning methods for feature selection and generation of predictive models. Results Feature selection and model creation were based on a training cohort of 55 patients with recurrent NSCLC treated with PD-1/PD-L1 antibody therapy. Resulting models identified patients with superior outcomes to immunotherapy, as validated in two subsequently recruited, separate patient cohorts (n = 67, hazard ratio = 0.46, p = 0.035). The predictive information obtained from these models was orthogonal to PD-L1 expression as per immunohistochemistry: Selecting by PD-L1 positivity at immunohistochemistry plus model prediction identified patients with highly favourable outcomes. Independence of PD-L1 positivity and model predictions were confirmed in multivariate analysis. Visualisation of the models revealed the predictive superiority of the entire 7-gene context over any single gene. Conclusion Using context-sensitive assays and bioinformatics capturing the tumour immune context allows precise prediction of response to PD-1/PD-L1-directed immunotherapy in NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
9秒前
漂漂亮亮大番薯完成签到,获得积分10
11秒前
如意的馒头完成签到 ,获得积分10
13秒前
xczhu完成签到,获得积分10
17秒前
17秒前
Jay完成签到,获得积分10
18秒前
23秒前
Sunny完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
MrChew完成签到 ,获得积分10
33秒前
喝酸奶不舔盖完成签到 ,获得积分10
40秒前
曾经不言完成签到 ,获得积分10
53秒前
CH完成签到 ,获得积分10
56秒前
1分钟前
SciGPT应助优雅的芝麻采纳,获得10
1分钟前
1分钟前
红毛兔完成签到 ,获得积分10
1分钟前
如意竺完成签到,获得积分10
1分钟前
1分钟前
zhangsan完成签到,获得积分10
1分钟前
沉默的寻凝完成签到 ,获得积分10
1分钟前
nojego完成签到,获得积分10
1分钟前
czj完成签到 ,获得积分10
1分钟前
猪猪完成签到 ,获得积分10
1分钟前
点点完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
小张想发刊完成签到,获得积分10
2分钟前
zz完成签到 ,获得积分0
2分钟前
王波完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
baoxiaozhai完成签到 ,获得积分10
2分钟前
2分钟前
研友_ZG4ml8完成签到 ,获得积分10
2分钟前
zhscu发布了新的文献求助10
3分钟前
慕容飞凤完成签到,获得积分10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
SQ发布了新的文献求助10
3分钟前
Horizon完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155756
捐赠科研通 3245461
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247