Although colchicine (COL) has been used to treat gout for more than a thousand years, it has been shrouded in a dark history for a long time due to its high toxicity, especially for the gastrointestinal tract. With the widespread clinical application of COL, COL’s toxicity to the gastrointestinal tract has raised concerns. This study’s objective was to address the exact intestinal toxicity of COL, with particular attention to the effects of COL on gut microbiota homeostasis. The mice were exposed to various dosages of COL (0.1, 0.5, and 2.5 mg kg−1 body weight per day) for a week, and the results showed that COL exposure caused serious intestinal injuries, reducing the relative expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and tight junction proteins (zo-1, claudin-1, and occludin) in the ileum and colon tissue. The 16S rRNA gene sequencing analysis of mice feces samples revealed that the composition and diversity of intestinal microbiome underwent a profound remodeling at the dosage of 2.5 mg kg−1 body weight per day, which may increase the toxic load in the gut. In addition, elevated levels of diamine oxidase (DAO) and lipopolysaccharide (LPS) in serum indicated that COL increased intestinal permeability, impairing intestinal barrier. In conclusion, our results demonstrate that COL’s toxicity to the gut microbiome is compatible with intestinal injuries, inflammatory pathway inhibition, and increased intestinal permeability; our results also represent a novel insight to uncover the adverse reactions of COL in the gastrointestinal tract.