Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results

2019年冠状病毒病(COVID-19) 机器学习 医学 计算机科学 重复性 人工智能 血液检验 可靠性(半导体) 试验装置 集合(抽象数据类型) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 传输(电信) 考试(生物学) 数据挖掘 鉴定(生物学) 大流行 疾病 统计 病理 传染病(医学专业) 内科学 数学 古生物学 电信 功率(物理) 植物 物理 量子力学 生物 程序设计语言
作者
Jiangpeng Wu,Pengyi Zhang,Liting Zhang,Wenbo Meng,Junfeng Li,Chongxiang Tong,Yonghong Li,Jing Cai,Zengwei Yang,Jinhong Zhu,Meie Zhao,Huirong Huang,Xiaodong Xie,Shuyan Li
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:166
标识
DOI:10.1101/2020.04.02.20051136
摘要

Abstract Since the sudden outbreak of coronavirus disease 2019 (COVID-19), it has rapidly evolved into a momentous global health concern. Due to the lack of constructive information on the pathogenesis of COVID-19 and specific treatment, it highlights the importance of early diagnosis and timely treatment. In this study, 11 key blood indices were extracted through random forest algorithm to build the final assistant discrimination tool from 49 clinical available blood test data which were derived by commercial blood test equipments. The method presented robust outcome to accurately identify COVID-19 from a variety of suspected patients with similar CT information or similar symptoms, with accuracy of 0.9795 and 0.9697 for the cross-validation set and test set, respectively. The tool also demonstrated its outstanding performance on an external validation set that was completely independent of the modeling process, with sensitivity, specificity, and overall accuracy of 0.9512, 0.9697, and 0.9595, respectively. Besides, 24 samples from overseas infected patients with COVID-19 were used to make an in-depth clinical assessment with accuracy of 0.9167. After multiple verification, the reliability and repeatability of the tool has been fully evaluated, and it has the potential to develop into an emerging technology to identify COVID-19 and lower the burden of global public health. The proposed tool is well-suited to carry out preliminary assessment of suspected patients and help them to get timely treatment and quarantine suggestion. The assistant tool is now available online at http://lishuyan.lzu.edu.cn/COVID2019_2/ . Funding This work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2020-sp11) and the Gansu Provincial COVID-19 Science and Technology Major Project, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
2秒前
rrr00011完成签到,获得积分10
2秒前
马梓萌完成签到,获得积分10
3秒前
3秒前
清爽的芷蕾完成签到,获得积分10
4秒前
4秒前
浮游应助式微采纳,获得20
6秒前
1020发布了新的文献求助10
6秒前
CipherSage应助rrr00011采纳,获得10
6秒前
高贵路灯完成签到,获得积分10
7秒前
田田发布了新的文献求助10
7秒前
文艺弼发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
7秒前
陈琳发布了新的文献求助10
8秒前
8秒前
cqy发布了新的文献求助10
8秒前
鹤九发布了新的文献求助10
10秒前
小盆呐发布了新的文献求助10
10秒前
FashionBoy应助马梓萌采纳,获得10
11秒前
杯中冰糖茶完成签到,获得积分10
11秒前
xzy998应助暴躁土拨鼠采纳,获得10
12秒前
12秒前
bkagyin应助stoic采纳,获得10
12秒前
rrrick发布了新的文献求助10
12秒前
13秒前
轻松凝竹发布了新的文献求助10
13秒前
milv5完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
kysl发布了新的文献求助10
17秒前
在水一方应助露露采纳,获得10
18秒前
18秒前
木子发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933494
求助须知:如何正确求助?哪些是违规求助? 4201667
关于积分的说明 13054312
捐赠科研通 3975738
什么是DOI,文献DOI怎么找? 2178554
邀请新用户注册赠送积分活动 1194827
关于科研通互助平台的介绍 1106265