Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results

2019年冠状病毒病(COVID-19) 机器学习 医学 计算机科学 重复性 人工智能 血液检验 可靠性(半导体) 试验装置 集合(抽象数据类型) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 传输(电信) 考试(生物学) 数据挖掘 鉴定(生物学) 大流行 疾病 统计 病理 传染病(医学专业) 内科学 数学 古生物学 电信 功率(物理) 植物 物理 量子力学 生物 程序设计语言
作者
Jiangpeng Wu,Pengyi Zhang,Liting Zhang,Wenbo Meng,Junfeng Li,Chongxiang Tong,Yonghong Li,Jing Cai,Zengwei Yang,Jinhong Zhu,Meie Zhao,Huirong Huang,Xiaodong Xie,Shuyan Li
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:166
标识
DOI:10.1101/2020.04.02.20051136
摘要

Abstract Since the sudden outbreak of coronavirus disease 2019 (COVID-19), it has rapidly evolved into a momentous global health concern. Due to the lack of constructive information on the pathogenesis of COVID-19 and specific treatment, it highlights the importance of early diagnosis and timely treatment. In this study, 11 key blood indices were extracted through random forest algorithm to build the final assistant discrimination tool from 49 clinical available blood test data which were derived by commercial blood test equipments. The method presented robust outcome to accurately identify COVID-19 from a variety of suspected patients with similar CT information or similar symptoms, with accuracy of 0.9795 and 0.9697 for the cross-validation set and test set, respectively. The tool also demonstrated its outstanding performance on an external validation set that was completely independent of the modeling process, with sensitivity, specificity, and overall accuracy of 0.9512, 0.9697, and 0.9595, respectively. Besides, 24 samples from overseas infected patients with COVID-19 were used to make an in-depth clinical assessment with accuracy of 0.9167. After multiple verification, the reliability and repeatability of the tool has been fully evaluated, and it has the potential to develop into an emerging technology to identify COVID-19 and lower the burden of global public health. The proposed tool is well-suited to carry out preliminary assessment of suspected patients and help them to get timely treatment and quarantine suggestion. The assistant tool is now available online at http://lishuyan.lzu.edu.cn/COVID2019_2/ . Funding This work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2020-sp11) and the Gansu Provincial COVID-19 Science and Technology Major Project, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DiJia完成签到 ,获得积分10
1秒前
平常紫安完成签到 ,获得积分10
1秒前
LIJIngcan完成签到 ,获得积分10
2秒前
djdh完成签到 ,获得积分10
3秒前
Lee完成签到 ,获得积分10
3秒前
兔BF完成签到,获得积分10
3秒前
烂漫的蜡烛完成签到 ,获得积分10
4秒前
SciGPT应助蝈蝈采纳,获得10
4秒前
傲慢与偏见完成签到,获得积分10
6秒前
ywindm完成签到 ,获得积分10
7秒前
大气白翠完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
RR完成签到 ,获得积分10
8秒前
8秒前
沉静的乘风完成签到,获得积分10
9秒前
淳于白凝完成签到,获得积分0
10秒前
laa完成签到,获得积分10
10秒前
春风送暖完成签到,获得积分10
10秒前
清修发布了新的文献求助10
11秒前
WWWUBING完成签到,获得积分10
12秒前
3080完成签到 ,获得积分10
13秒前
Titi完成签到 ,获得积分10
13秒前
无止完成签到,获得积分10
14秒前
14秒前
chenying完成签到 ,获得积分0
16秒前
wei完成签到,获得积分10
17秒前
zhangj696完成签到,获得积分10
19秒前
科研助理发布了新的文献求助10
19秒前
提莫蘑菇完成签到,获得积分10
19秒前
Leila完成签到,获得积分10
20秒前
合适的自行车完成签到 ,获得积分10
20秒前
CodeCraft应助艺阳采纳,获得10
22秒前
机智的阿振完成签到,获得积分10
22秒前
LS完成签到,获得积分10
26秒前
神厨小福桂完成签到 ,获得积分10
27秒前
丰富的澜完成签到 ,获得积分10
27秒前
专一的砖头完成签到,获得积分20
28秒前
automan发布了新的文献求助20
29秒前
量子星尘发布了新的文献求助10
29秒前
陈陈要毕业完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861