Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results

2019年冠状病毒病(COVID-19) 机器学习 医学 计算机科学 重复性 人工智能 血液检验 可靠性(半导体) 试验装置 集合(抽象数据类型) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 传输(电信) 考试(生物学) 数据挖掘 鉴定(生物学) 大流行 疾病 统计 病理 传染病(医学专业) 内科学 数学 功率(物理) 古生物学 程序设计语言 物理 生物 电信 量子力学 植物
作者
Jiangpeng Wu,Pengyi Zhang,Liting Zhang,Wenbo Meng,Junfeng Li,Chongxiang Tong,Yonghong Li,Jing Cai,Zengwei Yang,Jinhong Zhu,Meie Zhao,Huirong Huang,Xiaodong Xie,Shuyan Li
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:166
标识
DOI:10.1101/2020.04.02.20051136
摘要

Abstract Since the sudden outbreak of coronavirus disease 2019 (COVID-19), it has rapidly evolved into a momentous global health concern. Due to the lack of constructive information on the pathogenesis of COVID-19 and specific treatment, it highlights the importance of early diagnosis and timely treatment. In this study, 11 key blood indices were extracted through random forest algorithm to build the final assistant discrimination tool from 49 clinical available blood test data which were derived by commercial blood test equipments. The method presented robust outcome to accurately identify COVID-19 from a variety of suspected patients with similar CT information or similar symptoms, with accuracy of 0.9795 and 0.9697 for the cross-validation set and test set, respectively. The tool also demonstrated its outstanding performance on an external validation set that was completely independent of the modeling process, with sensitivity, specificity, and overall accuracy of 0.9512, 0.9697, and 0.9595, respectively. Besides, 24 samples from overseas infected patients with COVID-19 were used to make an in-depth clinical assessment with accuracy of 0.9167. After multiple verification, the reliability and repeatability of the tool has been fully evaluated, and it has the potential to develop into an emerging technology to identify COVID-19 and lower the burden of global public health. The proposed tool is well-suited to carry out preliminary assessment of suspected patients and help them to get timely treatment and quarantine suggestion. The assistant tool is now available online at http://lishuyan.lzu.edu.cn/COVID2019_2/ . Funding This work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2020-sp11) and the Gansu Provincial COVID-19 Science and Technology Major Project, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
跳跃毒娘完成签到,获得积分10
2秒前
刘大宝发布了新的文献求助10
2秒前
OFish完成签到,获得积分10
4秒前
4秒前
马小马完成签到,获得积分10
4秒前
跳跃毒娘发布了新的文献求助10
4秒前
wuhao0118发布了新的文献求助10
8秒前
12秒前
皮凡完成签到,获得积分10
13秒前
wb发布了新的文献求助10
14秒前
马小马发布了新的文献求助20
14秒前
17秒前
和谐诗柳发布了新的文献求助10
18秒前
英姑应助小娟娟采纳,获得10
19秒前
20秒前
华志文发布了新的文献求助10
21秒前
111完成签到 ,获得积分10
26秒前
kento应助柒柒采纳,获得200
29秒前
汉堡包应助cheng采纳,获得10
30秒前
31秒前
一叶知秋发布了新的文献求助10
31秒前
32秒前
胡茶茶完成签到 ,获得积分10
32秒前
gogozoco发布了新的文献求助10
34秒前
34秒前
zhaofw完成签到,获得积分10
34秒前
科研通AI2S应助leyellows采纳,获得10
35秒前
Lavender发布了新的文献求助10
36秒前
36秒前
科研通AI2S应助Yuxiao采纳,获得30
36秒前
田様应助roger采纳,获得10
37秒前
半生半熟完成签到,获得积分10
37秒前
疗伤烧肉粽完成签到,获得积分10
38秒前
酷波er应助青瓜大王采纳,获得10
38秒前
39秒前
庾磬发布了新的文献求助10
39秒前
刘大宝完成签到,获得积分20
42秒前
盒子盒子完成签到 ,获得积分10
42秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723533
关于积分的说明 7482058
捐赠科研通 2370562
什么是DOI,文献DOI怎么找? 1257065
科研通“疑难数据库(出版商)”最低求助积分说明 609810
版权声明 596861