AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse‐data CT

迭代重建 正规化(语言学) 人工神经网络 氡变换 计算机科学 人工智能 数据集 图像质量 算法 模式识别(心理学) 计算机视觉 图像(数学)
作者
Gaoyu Chen,Xiang Hong,Qiaoqiao Ding,Yi Zhang,Hu Chen,Shujun Fu,Yunsong Zhao,Xiaoqun Zhang,Hui Ji,Ge Wang,Qiu Huang,Hao Gao
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2916-2930 被引量:49
标识
DOI:10.1002/mp.14170
摘要

Purpose Sparse‐data computed tomography (CT) frequently occurs, such as breast tomosynthesis, C‐arm CT, on‐board four‐dimensional cone‐beam CT (4D CBCT), and industrial CT. However, sparse‐data image reconstruction remains challenging due to highly undersampled data. This work develops a data‐driven image reconstruction method for sparse‐data CT using deep neural networks (DNN). Methods The new method so‐called AirNet is designed to incorporate the benefits from analytical reconstruction method (AR), iterative reconstruction method (IR), and DNN. It is built upon fused analytical and iterative reconstruction (AIR) that synergizes AR and IR via the optimization framework of modified proximal forward‐backward splitting (PFBS). By unrolling PFBS into IR updates of CT data fidelity and DNN regularization with residual learning, AirNet utilizes AR such as FBP during the data fidelity, introduces dense connectivity into DNN regularization, and learns PFBS coefficients and DNN parameters that minimize the loss function during the training stage; and then AirNet with trained parameters can be used for end‐to‐end image reconstruction. Results A CT atlas of 100 prostate scans was used to validate the AirNet in comparison with state‐of‐art DNN‐based postprocessing and image reconstruction methods. The validation loss in AirNet had the fastest decreasing rate, owing to inherited fast convergence from AIR. AirNet was robust to noise in projection data and content differences between the training set and the images to be reconstructed. The impact of image quality on radiotherapy treatment planning was evaluated for both photon and proton therapy, and AirNet achieved the best treatment plan quality, especially for proton therapy. For example, with limited‐angle data, the maximal target dose for AirNet was 109.5% in comparison with the ground truth 109.1%, while it was significantly elevated to 115.1% and 128.1% for FBPConvNet and LEARN, respectively. Conclusions A new image reconstruction AirNet is developed for sparse‐data CT image reconstruction. AirNet achieved the best image reconstruction quality both visually and quantitatively among all methods under comparison for all sparse‐data scenarios (sparse‐view and limited‐angle), and provided the best photon and proton treatment plan quality based on sparse‐data CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助dasdsa采纳,获得10
刚刚
负责蜜蜂发布了新的文献求助10
1秒前
2秒前
ntxlks完成签到,获得积分10
4秒前
yangyangyang完成签到,获得积分10
5秒前
老白非完成签到,获得积分10
5秒前
wipmzxu完成签到,获得积分10
7秒前
cccyyy完成签到,获得积分10
7秒前
7秒前
8秒前
默默的月光完成签到,获得积分10
8秒前
大个应助老白非采纳,获得10
8秒前
自然之水完成签到,获得积分10
9秒前
fifteen发布了新的文献求助10
9秒前
9秒前
10秒前
wwwwww发布了新的文献求助10
10秒前
10秒前
英俊丹秋发布了新的文献求助10
11秒前
12秒前
qudie发布了新的文献求助10
12秒前
8R60d8应助喜遇徐采纳,获得10
13秒前
早发论文应助Xiaoixa采纳,获得10
13秒前
13秒前
zuto吗喽发布了新的文献求助10
15秒前
小九九发布了新的文献求助10
15秒前
15秒前
lyx发布了新的文献求助30
16秒前
16秒前
17秒前
17秒前
闫伯涵发布了新的文献求助10
17秒前
清茶完成签到,获得积分10
18秒前
qudie完成签到,获得积分10
19秒前
FashionBoy应助大力翠丝采纳,获得10
19秒前
小青关注了科研通微信公众号
19秒前
20秒前
玉桂兔发布了新的文献求助10
20秒前
英姑应助左旋麦乐鸡采纳,获得10
21秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068