AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse‐data CT

迭代重建 正规化(语言学) 人工神经网络 氡变换 计算机科学 人工智能 数据集 图像质量 算法 模式识别(心理学) 计算机视觉 图像(数学)
作者
Gaoyu Chen,Xiang Hong,Qiaoqiao Ding,Yi Zhang,Hu Chen,Shujun Fu,Yunsong Zhao,Xiaoqun Zhang,Hui Ji,Ge Wang,Qiu Huang,Hao Gao
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2916-2930 被引量:49
标识
DOI:10.1002/mp.14170
摘要

Purpose Sparse‐data computed tomography (CT) frequently occurs, such as breast tomosynthesis, C‐arm CT, on‐board four‐dimensional cone‐beam CT (4D CBCT), and industrial CT. However, sparse‐data image reconstruction remains challenging due to highly undersampled data. This work develops a data‐driven image reconstruction method for sparse‐data CT using deep neural networks (DNN). Methods The new method so‐called AirNet is designed to incorporate the benefits from analytical reconstruction method (AR), iterative reconstruction method (IR), and DNN. It is built upon fused analytical and iterative reconstruction (AIR) that synergizes AR and IR via the optimization framework of modified proximal forward‐backward splitting (PFBS). By unrolling PFBS into IR updates of CT data fidelity and DNN regularization with residual learning, AirNet utilizes AR such as FBP during the data fidelity, introduces dense connectivity into DNN regularization, and learns PFBS coefficients and DNN parameters that minimize the loss function during the training stage; and then AirNet with trained parameters can be used for end‐to‐end image reconstruction. Results A CT atlas of 100 prostate scans was used to validate the AirNet in comparison with state‐of‐art DNN‐based postprocessing and image reconstruction methods. The validation loss in AirNet had the fastest decreasing rate, owing to inherited fast convergence from AIR. AirNet was robust to noise in projection data and content differences between the training set and the images to be reconstructed. The impact of image quality on radiotherapy treatment planning was evaluated for both photon and proton therapy, and AirNet achieved the best treatment plan quality, especially for proton therapy. For example, with limited‐angle data, the maximal target dose for AirNet was 109.5% in comparison with the ground truth 109.1%, while it was significantly elevated to 115.1% and 128.1% for FBPConvNet and LEARN, respectively. Conclusions A new image reconstruction AirNet is developed for sparse‐data CT image reconstruction. AirNet achieved the best image reconstruction quality both visually and quantitatively among all methods under comparison for all sparse‐data scenarios (sparse‐view and limited‐angle), and provided the best photon and proton treatment plan quality based on sparse‐data CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_IEEE快到碗里来完成签到,获得积分10
1秒前
哈哈大笑应助吴岳采纳,获得10
1秒前
1秒前
酷炫中蓝完成签到,获得积分10
1秒前
早川完成签到 ,获得积分10
2秒前
拼搏语薇完成签到,获得积分10
2秒前
科研通AI5应助SCI采纳,获得10
3秒前
dling02完成签到 ,获得积分10
3秒前
3秒前
是天使呢完成签到,获得积分10
3秒前
4秒前
4秒前
内向秋寒发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
ding应助zhui采纳,获得10
5秒前
drwang120完成签到 ,获得积分10
5秒前
坨坨西州完成签到,获得积分10
6秒前
海绵体宝宝应助Louise采纳,获得20
6秒前
小马甲应助lichaoyes采纳,获得10
6秒前
6秒前
7秒前
7秒前
坨坨西州发布了新的文献求助10
8秒前
彬彬发布了新的文献求助10
8秒前
大模型应助Abao采纳,获得10
8秒前
sfw驳回了苏照杭应助
9秒前
dingdong发布了新的文献求助10
9秒前
别拖延了要毕业啊完成签到,获得积分10
10秒前
10秒前
10秒前
Rrr发布了新的文献求助10
10秒前
dingdong发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
yuan发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794