Nomogram Model for Predicting Risk of Postoperative Delirium After Deep Brain Stimulation Surgery in Patients Older Than 50 Years with Parkinson Disease

列线图 医学 谵妄 回顾性队列研究 入射(几何) 接收机工作特性 脑深部刺激 外科 疾病 内科学 物理疗法 帕金森病 重症监护医学 光学 物理
作者
Ling Zhan,Xueqi Wang,Lixiang Zhang
出处
期刊:World Neurosurgery [Elsevier]
卷期号:139: e127-e135 被引量:24
标识
DOI:10.1016/j.wneu.2020.03.160
摘要

To explore the influencing factors of postoperative delirium (POD) after deep brain electric stimulation (DBS) in patients older than 50 years with Parkinson disease (PD) and to construct a nomogram model to predict the risk of POD.A retrospective cohort study was conducted of 229 patients older than 50 years with PD hospitalized from January 2015 to August 2019. All patients received DBS during hospitalization. The incidence of POD of patients and clinical data such as gender, age, educational level, and duration of disease were collected, the influencing factors of POD of patients with PD were analyzed, and a nomogram model for predicting the risk of POD was established.POD occurred in 47 of 229 patients with PD, with an incidence rate of 20.52%. Gender, age, Parkinson's Disease Sleep Scale score, preoperative cerebral ischemia, preoperative pulmonary inflammation, and preoperative length of stay are the influencing factors of POD in patients older than 50 years with PD (P < 0.05). After deviation correction, the area under the receiver operating characteristic curve of the nomogram model for predicting POD risk is 0.755, the sensitivity is 74.47%, and the specificity is 73.08%. The mean absolute error between the prediction of POD risk by the nomogram model and actual delirium risk is 0.024, suggesting that the nomogram model has good prediction efficiency.Based on the influencing factors of delirium after DBS for patients older than 50 years with PD, the nomogram model for predicting the risk of POD has been established in this study. The prediction efficiency is good, which can provide a reference for early clinical identification of high-risk patients and formulate interventional countermeasures as soon as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666发布了新的文献求助10
刚刚
BB发布了新的文献求助10
1秒前
冷静雅青完成签到 ,获得积分10
2秒前
打打应助zhui采纳,获得10
2秒前
2秒前
科研通AI5应助xiu采纳,获得10
2秒前
3秒前
4秒前
William鉴哲完成签到,获得积分10
4秒前
神奇科研圆完成签到,获得积分10
4秒前
4秒前
biomds完成签到,获得积分10
4秒前
4秒前
5秒前
乐乐应助huifang采纳,获得10
5秒前
范范发布了新的文献求助10
6秒前
倩迷谜完成签到,获得积分0
7秒前
7秒前
酷酷的紫南完成签到 ,获得积分10
8秒前
迷人凡旋完成签到,获得积分20
8秒前
JamesPei应助大李包采纳,获得10
8秒前
8秒前
天涯完成签到 ,获得积分10
9秒前
shr完成签到,获得积分10
9秒前
落后以旋完成签到,获得积分10
9秒前
小二郎应助缚大哥采纳,获得10
9秒前
充电宝应助青木蓝采纳,获得10
10秒前
云中渊发布了新的文献求助10
10秒前
冷静的毛豆完成签到,获得积分10
10秒前
涵Allen完成签到 ,获得积分10
10秒前
思源应助wzxxxx采纳,获得10
10秒前
隐形曼青应助shelly0621采纳,获得10
11秒前
无敌鱼发布了新的文献求助10
11秒前
12秒前
meimei完成签到,获得积分10
12秒前
朴实的薯片完成签到,获得积分10
13秒前
way完成签到,获得积分10
14秒前
脑洞疼应助Chan0501采纳,获得10
15秒前
fancy完成签到 ,获得积分10
15秒前
Maglev发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794