清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Dian Ren,Nathanaël Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:8: e10170-e10170 被引量:15
标识
DOI:10.7717/peerj.10170
摘要

Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations.Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1-60 seconds), (2) some selected sensor configurations and (3) different numbers of data features.A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. "Running" demonstrated the highest sensitivity (100%). "Walking up a slope" was linked with the lowest performance (63%), with the majority of the false negatives being "walking on a flat surface" and "walking upstairs." Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm.High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的盛男完成签到 ,获得积分10
12秒前
吴静完成签到 ,获得积分10
44秒前
灯光师完成签到,获得积分10
52秒前
widesky777完成签到 ,获得积分0
53秒前
大雁完成签到 ,获得积分10
53秒前
科研通AI5应助灯光师采纳,获得10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
1分钟前
加油发布了新的文献求助10
1分钟前
大胆面包完成签到 ,获得积分10
1分钟前
完美世界应助加油采纳,获得10
1分钟前
1分钟前
Yoanna应助科研通管家采纳,获得30
1分钟前
1分钟前
闹心发布了新的文献求助10
1分钟前
彭晓雅发布了新的文献求助80
1分钟前
一个小胖子完成签到,获得积分10
2分钟前
Akim应助一个小胖子采纳,获得10
2分钟前
斯文败类应助LeezZZZ采纳,获得10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
李铃锐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
鹏哥爱科研完成签到,获得积分20
3分钟前
灯光师发布了新的文献求助10
3分钟前
roger完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
3分钟前
晚风发布了新的文献求助10
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
万能图书馆应助晚风采纳,获得10
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
赵李锋完成签到,获得积分10
4分钟前
六一儿童节完成签到 ,获得积分0
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149474
求助须知:如何正确求助?哪些是违规求助? 4345460
关于积分的说明 13530498
捐赠科研通 4187811
什么是DOI,文献DOI怎么找? 2296482
邀请新用户注册赠送积分活动 1296860
关于科研通互助平台的介绍 1241187