Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Ren Dian,Nathanael Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:8: e10170-e10170 被引量:4
标识
DOI:10.7717/peerj.10170
摘要

Background Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations. Method Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1–60 seconds), (2) some selected sensor configurations and (3) different numbers of data features. Results A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. “Running” demonstrated the highest sensitivity (100%). “Walking up a slope” was linked with the lowest performance (63%), with the majority of the false negatives being “walking on a flat surface” and “walking upstairs.” Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm. Conclusion High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
5秒前
5秒前
外向贞发布了新的文献求助10
6秒前
Jodie发布了新的文献求助10
6秒前
YXF发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
7秒前
8秒前
蝈蝈蝈完成签到 ,获得积分10
8秒前
xzw发布了新的文献求助10
8秒前
littlepear完成签到,获得积分10
8秒前
晨子完成签到,获得积分10
9秒前
YFW发布了新的文献求助10
9秒前
一叶知秋发布了新的文献求助10
9秒前
欢喜的小海豚完成签到,获得积分10
11秒前
雪蛤发布了新的文献求助10
11秒前
12秒前
Orange应助cl采纳,获得10
12秒前
丘比特应助地平线采纳,获得10
13秒前
13秒前
华仔应助YXF采纳,获得10
14秒前
魏志航完成签到,获得积分20
14秒前
红岸发布了新的文献求助10
16秒前
xzw完成签到,获得积分10
16秒前
科目三应助moon123采纳,获得10
17秒前
科目三应助雪蛤采纳,获得10
18秒前
吴彦祖发布了新的文献求助10
18秒前
852应助YFW采纳,获得10
20秒前
21秒前
yookia应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
无私的芹应助科研通管家采纳,获得10
22秒前
无私的芹应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
无私的芹应助科研通管家采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916