Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Ren Dian,Nathanael Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:8: e10170-e10170 被引量:4
标识
DOI:10.7717/peerj.10170
摘要

Background Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations. Method Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1–60 seconds), (2) some selected sensor configurations and (3) different numbers of data features. Results A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. “Running” demonstrated the highest sensitivity (100%). “Walking up a slope” was linked with the lowest performance (63%), with the majority of the false negatives being “walking on a flat surface” and “walking upstairs.” Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm. Conclusion High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨橙完成签到,获得积分10
1秒前
搜集达人应助飘逸之玉采纳,获得10
1秒前
勤劳初雪发布了新的文献求助10
2秒前
wm鹏睿完成签到 ,获得积分10
2秒前
2秒前
lengchitu完成签到,获得积分10
2秒前
WD完成签到,获得积分10
3秒前
LMW应助积极的白秋采纳,获得10
3秒前
3秒前
坚强馒头发布了新的文献求助20
4秒前
YCYycy发布了新的文献求助10
4秒前
丘比特应助小刘采纳,获得10
5秒前
1282941496完成签到,获得积分10
5秒前
zhao完成签到,获得积分10
5秒前
Zel博博完成签到,获得积分10
5秒前
是风动完成签到 ,获得积分10
5秒前
苽峰完成签到,获得积分10
6秒前
cyyyyyyyyyy完成签到,获得积分10
6秒前
6秒前
less发布了新的文献求助10
7秒前
齐齐完成签到,获得积分10
7秒前
漫步云端完成签到,获得积分10
8秒前
Renee完成签到,获得积分10
8秒前
小黄鸭完成签到,获得积分10
8秒前
笨笨千亦发布了新的文献求助10
8秒前
9秒前
9秒前
ice完成签到,获得积分10
9秒前
丹丹完成签到,获得积分20
9秒前
AronHUANG完成签到,获得积分10
9秒前
陌上尘开发布了新的文献求助10
9秒前
小杨发布了新的文献求助10
10秒前
王炸完成签到,获得积分10
10秒前
大个应助汪哈七采纳,获得10
10秒前
阿庆完成签到,获得积分10
11秒前
11秒前
zhangweiji发布了新的文献求助10
12秒前
guo给guo的求助进行了留言
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743