Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Ren Dian,Nathanael Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ]
卷期号:8: e10170-e10170 被引量:4
标识
DOI:10.7717/peerj.10170
摘要

Background Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations. Method Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1–60 seconds), (2) some selected sensor configurations and (3) different numbers of data features. Results A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. “Running” demonstrated the highest sensitivity (100%). “Walking up a slope” was linked with the lowest performance (63%), with the majority of the false negatives being “walking on a flat surface” and “walking upstairs.” Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm. Conclusion High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kydd发布了新的文献求助10
1秒前
Papillon完成签到,获得积分10
1秒前
平淡的文龙完成签到,获得积分10
1秒前
盛夏完成签到,获得积分10
1秒前
贤惠的正豪完成签到,获得积分20
2秒前
3秒前
沛沛完成签到,获得积分10
4秒前
四月完成签到,获得积分10
4秒前
5秒前
常青完成签到,获得积分10
5秒前
WxChen发布了新的文献求助10
5秒前
guoguo完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
今后应助.....采纳,获得10
6秒前
7秒前
快帮我找找完成签到,获得积分10
7秒前
7秒前
Wendy完成签到,获得积分10
7秒前
无花果应助XXF采纳,获得10
8秒前
juanjuan完成签到,获得积分20
8秒前
立波发布了新的文献求助10
8秒前
灵溪完成签到 ,获得积分10
9秒前
故意的沛蓝完成签到,获得积分10
9秒前
9秒前
小巧日记本完成签到,获得积分10
9秒前
7275XXX完成签到,获得积分10
10秒前
我是老大应助xwc采纳,获得30
11秒前
123完成签到,获得积分10
12秒前
ChangSZ应助研友_8oYg4n采纳,获得10
12秒前
思源应助暴躁的安柏采纳,获得10
13秒前
13秒前
李繁蕊发布了新的文献求助10
13秒前
Evelyn关注了科研通微信公众号
14秒前
14秒前
WKY完成签到,获得积分10
15秒前
manan发布了新的文献求助10
15秒前
亮亮关注了科研通微信公众号
15秒前
yuming完成签到,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740