Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Dian Ren,Nathanaël Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ]
卷期号:8: e10170-e10170 被引量:15
标识
DOI:10.7717/peerj.10170
摘要

Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations.Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1-60 seconds), (2) some selected sensor configurations and (3) different numbers of data features.A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. "Running" demonstrated the highest sensitivity (100%). "Walking up a slope" was linked with the lowest performance (63%), with the majority of the false negatives being "walking on a flat surface" and "walking upstairs." Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm.High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cici完成签到 ,获得积分10
9秒前
俭朴的芝麻完成签到,获得积分10
18秒前
吱吱吱完成签到 ,获得积分10
19秒前
医路微光完成签到,获得积分10
21秒前
Guangquan_Zhang完成签到,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
蛇從革应助科研通管家采纳,获得30
27秒前
尊敬依珊完成签到 ,获得积分10
27秒前
田様应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
不倦应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
猪猪hero发布了新的文献求助10
29秒前
xhd183完成签到 ,获得积分10
37秒前
无语完成签到,获得积分10
39秒前
高泽平完成签到,获得积分10
40秒前
hzh完成签到 ,获得积分10
40秒前
活力的石头完成签到 ,获得积分10
40秒前
41秒前
42秒前
脑洞疼应助奥莉奥采纳,获得30
44秒前
CQ完成签到 ,获得积分10
45秒前
45秒前
追梦完成签到,获得积分10
46秒前
夜倾心完成签到,获得积分10
49秒前
高泽平发布了新的文献求助10
50秒前
Hello应助云间山很困采纳,获得10
57秒前
mdJdm完成签到 ,获得积分10
57秒前
tangxf921完成签到,获得积分10
58秒前
跳跃馒头完成签到 ,获得积分10
1分钟前
April完成签到 ,获得积分10
1分钟前
杨杨杨完成签到,获得积分10
1分钟前
1分钟前
1分钟前
woshibyu完成签到 ,获得积分20
1分钟前
1分钟前
净心完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
tangxf921发布了新的文献求助10
1分钟前
小点完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304233
求助须知:如何正确求助?哪些是违规求助? 4450831
关于积分的说明 13849829
捐赠科研通 4337757
什么是DOI,文献DOI怎么找? 2381620
邀请新用户注册赠送积分活动 1376593
关于科研通互助平台的介绍 1343689