Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study

随机森林 可穿戴计算机 加速度计 活动识别 计算机科学 压力传感器 足底压力 可穿戴技术 算法 人工智能 机器学习 模拟 工程类 医学 嵌入式系统 机械工程 操作系统 病理
作者
Ren Dian,Nathanael Aubert-Kato,Emi Anzai,Yuji Ohta,Julien Tripette
出处
期刊:PeerJ [PeerJ]
卷期号:8: e10170-e10170 被引量:4
标识
DOI:10.7717/peerj.10170
摘要

Background Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capacities is offering new possibilities. Algorithms able to process data from a variety of smart devices and classify daily life activities could therefore be of particular importance to achieve a more accurate evaluation of physical behaviors. This study aims to (1) develop an activity recognition algorithm based on the processing of plantar pressure information provided by a smart-shoe prototype and (2) to determine the optimal hardware and software configurations. Method Seventeen subjects wore a pair of smart-shoe prototypes composed of plantar pressure measurement insoles, and they performed the following nine activities: sitting, standing, walking on a flat surface, walking upstairs, walking downstairs, walking up a slope, running, cycling, and completing office work. The insole featured seven pressure sensors. For each activity, at least four minutes of plantar pressure data were collected. The plantar pressure data were cut in overlapping windows of different lengths and 167 features were extracted for each window. Data were split into training and test samples using a subject-wise assignment method. A random forest model was trained to recognize activity. The resulting activity recognition algorithms were evaluated on the test sample. A multi hold-out procedure allowed repeating the operation with 5 different assignments. The analytic conditions were modulated to test (1) different window lengths (1–60 seconds), (2) some selected sensor configurations and (3) different numbers of data features. Results A window length of 20 s was found to be optimum and therefore used for the rest of the analysis. Using all the sensors and all 167 features, the smart shoes predicted the activities with an average success of 89%. “Running” demonstrated the highest sensitivity (100%). “Walking up a slope” was linked with the lowest performance (63%), with the majority of the false negatives being “walking on a flat surface” and “walking upstairs.” Some 2- and 3-sensor configurations were linked with an average success rate of 87%. Reducing the number of features down to 20 does not alter significantly the performance of the algorithm. Conclusion High-performance human behavior recognition using plantar pressure data only is possible. In the future, smart-shoe devices could contribute to the evaluation of daily physical activities. Minimalist configurations integrating only a small number of sensors and computing a reduced number of selected features could maintain a satisfying performance. Future experiments must include a more heterogeneous population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助CC采纳,获得10
1秒前
JamesPei应助xiaowannamoney采纳,获得10
2秒前
xuex1发布了新的文献求助10
2秒前
sennki完成签到,获得积分10
2秒前
深情安青应助lzy采纳,获得10
2秒前
霸气忆灵完成签到,获得积分20
3秒前
情怀应助kkk采纳,获得10
3秒前
3秒前
4秒前
4秒前
乐桉蓝完成签到,获得积分10
4秒前
5秒前
打打应助彩色的海蓝采纳,获得10
5秒前
5秒前
Ec_w发布了新的文献求助10
5秒前
qy完成签到,获得积分10
6秒前
7秒前
7秒前
11111发布了新的文献求助10
8秒前
韩钰小宝发布了新的文献求助10
8秒前
orixero应助adu采纳,获得10
10秒前
明亮的初阳完成签到,获得积分10
10秒前
隐形曼青应助lin采纳,获得10
10秒前
11秒前
jinyy发布了新的文献求助10
11秒前
尊敬的书桃完成签到 ,获得积分20
11秒前
12秒前
星辰大海应助霸气忆灵采纳,获得10
12秒前
陈旭阳发布了新的文献求助10
12秒前
Akim应助谢佳冀采纳,获得10
13秒前
14秒前
yy完成签到,获得积分10
15秒前
16秒前
李爱国应助l六分之一采纳,获得10
16秒前
我是老大应助NIUB采纳,获得10
17秒前
9way完成签到 ,获得积分10
18秒前
Ec_w完成签到 ,获得积分10
18秒前
碧蓝小凡完成签到,获得积分10
18秒前
深情安青应助典雅的俊驰采纳,获得10
19秒前
光能使者发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052