亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized Transcriptomic Analyses Identify Unique Signatures That Correlate with Genomic Subtypes in Acute Myeloid Leukemia (AML) Using Explainable Artificial Intelligence

净现值1 转录组 计算生物学 生物 髓系白血病 表型 外显子组测序 基因表达谱 生物信息学 基因 肿瘤科 医学 遗传学 癌症研究 基因表达 核型 染色体
作者
Yazan Rouphail,Nathan Radakovich,Jacob Shreve,Sudipto Mukherjee,Babal K. Jha,Jaroslaw P. Maciejewski,Mikkael A. Sekeres,Aziz Nazha
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 33-34 被引量:3
标识
DOI:10.1182/blood-2020-139522
摘要

Background Multi-omic analysis can identify unique signatures that correlate with cancer subtypes. While clinically meaningful molecular subtypes of AML have been defined based on the status of single genes such as NPM1 and FLT3, such categories remain heterogeneous and further work is needed to characterize their genetic and transcriptomic diversity on a truly individualized basis. Further, patients (pts) with NPM1+/FLT3-ITD- AML have a better overall survival compared to patients with NPM1-/FLT3-ITD+, suggesting that these pts could have different transcriptomic signature that impact phenotype, pathophysiology, and outcomes. Many current transcriptome analytic techniques use clustering analysis to aggregate samples and look at relationships on a cohort-wide basis to build transcriptomic signatures that correlate with phenotype or outcome. Such approaches can undermine the heterogeneity of the gene expression in pts with the same signatures. In this study, we took advantage of state of the art machine learning algorithms to identify unique transcriptomic signatures that correlate with AML genomic phenotype. Methods Genomic (whole exome sequencing and targeted deep sequencing) and transcriptomic data from 451 AML pts included in the Beat AML study (publicly available data) were used to build transcriptomic signatures that are specific for AML patients with NPM1+/FLT3-ITD+ compared to NPM1+/FLT3-ITD, and NPM1-/FLT3-ITD-. We chose these AML phenotypes as they have been described extensively and they correlate with clinical outcomes. Results A total of 242 patients (54%) had NPM1-/FLT3-, 35 (8%) were NPM1+/FLT3-, and 47 (10%) were NPM1+/FLT3+. Our algorithm identified 20 genes that are highly specific for NPM1/FLT3ITD phenotype: HOXB-AS3, SCRN1, LMX1B, PCBD1, DNAJC15, HOXA3, NPTXq, RP11-1055B8, ABDH128, HOXB8, SOCS2, HOXB3, HOXB9, MIR503HG, FAM221B, NRP1, NDUFAF3, MEG3, CCDC136, and HIST1H2BC. Interestingly, several of those genes were overexpressed or underexpressed in specific phenotypes. For example, SCRN1, LMX1B, RP11-1055B8, ABDH128, HOXB8, MIR503HG, NRP1 are only overexpressed or underexpressed in patients with NPM1-/FLT3-, while PCBD1, NDUFAF3, FAM221B are overexpressed or underexpressed in pts with NPM1+/FLT3+. These genes affect several important pathways that regulate cell differentiation, proliferation, mitochondrial oxidative phosphorylation, histone modification and lipid metabolism. All these genes had previously been reported as having altered expression in genomic studies of AML, confirming our approach's ability to identify biologically meaningful relationships. Further, our algorithm can provide a personalized explanation of overexpressed and underexpressed genes specific for a given patient, thus identifying targetable pathways for each pt. Figure 1 below shows three pts with the same genotype (NPM1+/FLT3-ITD+) but demonstrate different transcriptomic patterns of overexpression or underexpression that affect different biological pathways. Conclusions We describe the use of a state of the art explainable machine learning approach to define transcriptomic signatures that are specific for individual pts. In addition to correctly distinguishing AML subtype based on specific transcriptomic signatures, our model was able to accurately identify upregulated and downregulated genes that affecte several important biological pathways in AML and can summarize these pathways at an individual level. Such an approach can be used to provide personalized treatment options that can target the activated pathways at an individual level. Disclosures Mukherjee: Partnership for Health Analytic Research, LLC (PHAR, LLC): Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; EUSA Pharma: Consultancy; Celgene/Acceleron: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squib: Honoraria; Aplastic Anemia and MDS International Foundation: Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria. Sekeres:BMS: Consultancy; Takeda/Millenium: Consultancy; Pfizer: Consultancy. Nazha:Jazz: Research Funding; Incyte: Speakers Bureau; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
2秒前
行走完成签到,获得积分10
9秒前
BBQ完成签到,获得积分10
1分钟前
科研通AI5应助hahaha123213123采纳,获得10
1分钟前
Tashanzhishi发布了新的文献求助10
1分钟前
1分钟前
Tashanzhishi完成签到,获得积分10
1分钟前
1分钟前
576-576完成签到 ,获得积分10
2分钟前
2分钟前
没有几十亿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
虾青素应助王英俊采纳,获得10
2分钟前
JavedAli完成签到,获得积分10
3分钟前
ok123完成签到 ,获得积分10
3分钟前
慕青应助Ha采纳,获得10
3分钟前
卓初露完成签到 ,获得积分10
3分钟前
3分钟前
Ha完成签到,获得积分20
3分钟前
Ha发布了新的文献求助10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
薛清棵发布了新的文献求助10
4分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
HD发布了新的文献求助10
5分钟前
5分钟前
5分钟前
HD完成签到,获得积分10
6分钟前
GPTea应助科研通管家采纳,获得20
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
GPTea应助科研通管家采纳,获得20
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
李爱国应助不是小苦瓜采纳,获得10
6分钟前
不是小苦瓜完成签到,获得积分20
6分钟前
6分钟前
yangyueqiong发布了新的文献求助10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438