Personalized Transcriptomic Analyses Identify Unique Signatures That Correlate with Genomic Subtypes in Acute Myeloid Leukemia (AML) Using Explainable Artificial Intelligence

净现值1 转录组 计算生物学 生物 髓系白血病 表型 外显子组测序 基因表达谱 生物信息学 基因 肿瘤科 医学 遗传学 癌症研究 基因表达 核型 染色体
作者
Yazan Rouphail,Nathan Radakovich,Jacob Shreve,Sudipto Mukherjee,Babal K. Jha,Jaroslaw P. Maciejewski,Mikkael A. Sekeres,Aziz Nazha
出处
期刊:Blood [American Society of Hematology]
卷期号:136 (Supplement 1): 33-34 被引量:3
标识
DOI:10.1182/blood-2020-139522
摘要

Background Multi-omic analysis can identify unique signatures that correlate with cancer subtypes. While clinically meaningful molecular subtypes of AML have been defined based on the status of single genes such as NPM1 and FLT3, such categories remain heterogeneous and further work is needed to characterize their genetic and transcriptomic diversity on a truly individualized basis. Further, patients (pts) with NPM1+/FLT3-ITD- AML have a better overall survival compared to patients with NPM1-/FLT3-ITD+, suggesting that these pts could have different transcriptomic signature that impact phenotype, pathophysiology, and outcomes. Many current transcriptome analytic techniques use clustering analysis to aggregate samples and look at relationships on a cohort-wide basis to build transcriptomic signatures that correlate with phenotype or outcome. Such approaches can undermine the heterogeneity of the gene expression in pts with the same signatures. In this study, we took advantage of state of the art machine learning algorithms to identify unique transcriptomic signatures that correlate with AML genomic phenotype. Methods Genomic (whole exome sequencing and targeted deep sequencing) and transcriptomic data from 451 AML pts included in the Beat AML study (publicly available data) were used to build transcriptomic signatures that are specific for AML patients with NPM1+/FLT3-ITD+ compared to NPM1+/FLT3-ITD, and NPM1-/FLT3-ITD-. We chose these AML phenotypes as they have been described extensively and they correlate with clinical outcomes. Results A total of 242 patients (54%) had NPM1-/FLT3-, 35 (8%) were NPM1+/FLT3-, and 47 (10%) were NPM1+/FLT3+. Our algorithm identified 20 genes that are highly specific for NPM1/FLT3ITD phenotype: HOXB-AS3, SCRN1, LMX1B, PCBD1, DNAJC15, HOXA3, NPTXq, RP11-1055B8, ABDH128, HOXB8, SOCS2, HOXB3, HOXB9, MIR503HG, FAM221B, NRP1, NDUFAF3, MEG3, CCDC136, and HIST1H2BC. Interestingly, several of those genes were overexpressed or underexpressed in specific phenotypes. For example, SCRN1, LMX1B, RP11-1055B8, ABDH128, HOXB8, MIR503HG, NRP1 are only overexpressed or underexpressed in patients with NPM1-/FLT3-, while PCBD1, NDUFAF3, FAM221B are overexpressed or underexpressed in pts with NPM1+/FLT3+. These genes affect several important pathways that regulate cell differentiation, proliferation, mitochondrial oxidative phosphorylation, histone modification and lipid metabolism. All these genes had previously been reported as having altered expression in genomic studies of AML, confirming our approach's ability to identify biologically meaningful relationships. Further, our algorithm can provide a personalized explanation of overexpressed and underexpressed genes specific for a given patient, thus identifying targetable pathways for each pt. Figure 1 below shows three pts with the same genotype (NPM1+/FLT3-ITD+) but demonstrate different transcriptomic patterns of overexpression or underexpression that affect different biological pathways. Conclusions We describe the use of a state of the art explainable machine learning approach to define transcriptomic signatures that are specific for individual pts. In addition to correctly distinguishing AML subtype based on specific transcriptomic signatures, our model was able to accurately identify upregulated and downregulated genes that affecte several important biological pathways in AML and can summarize these pathways at an individual level. Such an approach can be used to provide personalized treatment options that can target the activated pathways at an individual level. Disclosures Mukherjee: Partnership for Health Analytic Research, LLC (PHAR, LLC): Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; EUSA Pharma: Consultancy; Celgene/Acceleron: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squib: Honoraria; Aplastic Anemia and MDS International Foundation: Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria. Sekeres:BMS: Consultancy; Takeda/Millenium: Consultancy; Pfizer: Consultancy. Nazha:Jazz: Research Funding; Incyte: Speakers Bureau; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
99发布了新的文献求助10
1秒前
1秒前
科研通AI5应助qi采纳,获得10
1秒前
乐乐发布了新的文献求助10
2秒前
铸一字错发布了新的文献求助10
2秒前
受伤书文完成签到,获得积分10
3秒前
Yvonne发布了新的文献求助10
3秒前
3秒前
温柔的十三完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
4秒前
nikai发布了新的文献求助10
4秒前
圣晟胜发布了新的文献求助10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Leif应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
5秒前
小金应助科研通管家采纳,获得20
5秒前
牛逼的昂完成签到,获得积分10
5秒前
muzi给muzi的求助进行了留言
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
yuhang完成签到 ,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
果汁完成签到,获得积分10
6秒前
NexusExplorer应助Zoe采纳,获得10
6秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
领导范儿应助junzilan采纳,获得10
8秒前
打打应助激动的一手采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759