Personalized Transcriptomic Analyses Identify Unique Signatures That Correlate with Genomic Subtypes in Acute Myeloid Leukemia (AML) Using Explainable Artificial Intelligence

净现值1 转录组 计算生物学 生物 髓系白血病 表型 外显子组测序 基因表达谱 生物信息学 基因 肿瘤科 医学 遗传学 癌症研究 基因表达 核型 染色体
作者
Yazan Rouphail,Nathan Radakovich,Jacob Shreve,Sudipto Mukherjee,Babal K. Jha,Jaroslaw P. Maciejewski,Mikkael A. Sekeres,Aziz Nazha
出处
期刊:Blood [American Society of Hematology]
卷期号:136 (Supplement 1): 33-34 被引量:3
标识
DOI:10.1182/blood-2020-139522
摘要

Background Multi-omic analysis can identify unique signatures that correlate with cancer subtypes. While clinically meaningful molecular subtypes of AML have been defined based on the status of single genes such as NPM1 and FLT3, such categories remain heterogeneous and further work is needed to characterize their genetic and transcriptomic diversity on a truly individualized basis. Further, patients (pts) with NPM1+/FLT3-ITD- AML have a better overall survival compared to patients with NPM1-/FLT3-ITD+, suggesting that these pts could have different transcriptomic signature that impact phenotype, pathophysiology, and outcomes. Many current transcriptome analytic techniques use clustering analysis to aggregate samples and look at relationships on a cohort-wide basis to build transcriptomic signatures that correlate with phenotype or outcome. Such approaches can undermine the heterogeneity of the gene expression in pts with the same signatures. In this study, we took advantage of state of the art machine learning algorithms to identify unique transcriptomic signatures that correlate with AML genomic phenotype. Methods Genomic (whole exome sequencing and targeted deep sequencing) and transcriptomic data from 451 AML pts included in the Beat AML study (publicly available data) were used to build transcriptomic signatures that are specific for AML patients with NPM1+/FLT3-ITD+ compared to NPM1+/FLT3-ITD, and NPM1-/FLT3-ITD-. We chose these AML phenotypes as they have been described extensively and they correlate with clinical outcomes. Results A total of 242 patients (54%) had NPM1-/FLT3-, 35 (8%) were NPM1+/FLT3-, and 47 (10%) were NPM1+/FLT3+. Our algorithm identified 20 genes that are highly specific for NPM1/FLT3ITD phenotype: HOXB-AS3, SCRN1, LMX1B, PCBD1, DNAJC15, HOXA3, NPTXq, RP11-1055B8, ABDH128, HOXB8, SOCS2, HOXB3, HOXB9, MIR503HG, FAM221B, NRP1, NDUFAF3, MEG3, CCDC136, and HIST1H2BC. Interestingly, several of those genes were overexpressed or underexpressed in specific phenotypes. For example, SCRN1, LMX1B, RP11-1055B8, ABDH128, HOXB8, MIR503HG, NRP1 are only overexpressed or underexpressed in patients with NPM1-/FLT3-, while PCBD1, NDUFAF3, FAM221B are overexpressed or underexpressed in pts with NPM1+/FLT3+. These genes affect several important pathways that regulate cell differentiation, proliferation, mitochondrial oxidative phosphorylation, histone modification and lipid metabolism. All these genes had previously been reported as having altered expression in genomic studies of AML, confirming our approach's ability to identify biologically meaningful relationships. Further, our algorithm can provide a personalized explanation of overexpressed and underexpressed genes specific for a given patient, thus identifying targetable pathways for each pt. Figure 1 below shows three pts with the same genotype (NPM1+/FLT3-ITD+) but demonstrate different transcriptomic patterns of overexpression or underexpression that affect different biological pathways. Conclusions We describe the use of a state of the art explainable machine learning approach to define transcriptomic signatures that are specific for individual pts. In addition to correctly distinguishing AML subtype based on specific transcriptomic signatures, our model was able to accurately identify upregulated and downregulated genes that affecte several important biological pathways in AML and can summarize these pathways at an individual level. Such an approach can be used to provide personalized treatment options that can target the activated pathways at an individual level. Disclosures Mukherjee: Partnership for Health Analytic Research, LLC (PHAR, LLC): Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; EUSA Pharma: Consultancy; Celgene/Acceleron: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squib: Honoraria; Aplastic Anemia and MDS International Foundation: Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria. Sekeres:BMS: Consultancy; Takeda/Millenium: Consultancy; Pfizer: Consultancy. Nazha:Jazz: Research Funding; Incyte: Speakers Bureau; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助淡定的思松采纳,获得10
1秒前
AlexMoser发布了新的文献求助10
2秒前
s1m0n_123发布了新的文献求助10
3秒前
硝基发布了新的文献求助10
3秒前
安氏月月发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
笨笨含羞草完成签到,获得积分10
6秒前
10秒前
14秒前
cpp完成签到,获得积分20
15秒前
jia雪完成签到,获得积分10
16秒前
16秒前
渠安发布了新的文献求助300
17秒前
18秒前
18秒前
领导范儿应助万万没想到采纳,获得10
21秒前
21秒前
NGU发布了新的文献求助10
21秒前
震动的宛菡完成签到 ,获得积分10
23秒前
北风歌完成签到,获得积分10
24秒前
25秒前
maggiexjl完成签到,获得积分10
25秒前
25秒前
娃娃菜妮发布了新的文献求助10
25秒前
凯凯发布了新的文献求助10
26秒前
26秒前
852应助宥沐采纳,获得10
26秒前
26秒前
Tracey16完成签到,获得积分10
26秒前
所所应助落花生采纳,获得10
28秒前
28秒前
YangHuilin发布了新的文献求助20
29秒前
30秒前
ehsl完成签到,获得积分10
30秒前
我爱小juju发布了新的文献求助10
31秒前
31秒前
领导范儿应助傲娇林采纳,获得10
32秒前
lcx发布了新的文献求助10
32秒前
Adi完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474