An Open-Source Monitor-Independent Movement Summary for Accelerometer Data Processing

加速度计 计算机科学 原始数据 自动汇总 采样(信号处理) 振动器 实时计算 运动(音乐) 一致性(知识库) 模拟 人工智能 计算机视觉 滤波器(信号处理) 声学 物理 操作系统 振动 程序设计语言
作者
Dinesh John,Qu Tang,Fahd Albinali,Stephen Intille
出处
期刊:Journal for the measurement of physical behaviour [Human Kinetics]
卷期号:2 (4): 268-281 被引量:118
标识
DOI:10.1123/jmpb.2018-0068
摘要

Background : Physical behavior researchers using motion sensors often use acceleration summaries to visualize, clean, and interpret data. Such output is dependent on device specifications (e.g., dynamic range, sampling rate) and/or are proprietary, which invalidate cross-study comparison of findings when using different devices. This limits flexibility in selecting devices to measure physical activity, sedentary behavior, and sleep. Purpose : Develop an open-source, universal acceleration summary metric that accounts for discrepancies in raw data among research and consumer devices. Methods : We used signal processing techniques to generate a Monitor-Independent Movement Summary unit (MIMS-unit) optimized to capture normal human motion. Methodological steps included raw signal harmonization to eliminate inter-device variability (e.g., dynamic g-range, sampling rate), bandpass filtering (0.2–5.0 Hz) to eliminate non-human movement, and signal aggregation to reduce data to simplify visualization and summarization. We examined the consistency of MIMS-units using orbital shaker testing on eight accelerometers with varying dynamic range (±2 to ±8 g) and sampling rates (20–100 Hz), and human data (N = 60) from an ActiGraph GT9X. Results : During shaker testing, MIMS-units yielded lower between-device coefficient of variations than proprietary ActiGraph and ENMO acceleration summaries. Unlike the widely used ActiGraph activity counts, MIMS-units were sensitive in detecting subtle wrist movements during sedentary behaviors. Conclusions : Open-source MIMS-units may provide a means to summarize high-resolution raw data in a device-independent manner, thereby increasing standardization of data cleaning and analytical procedures to estimate selected attributes of physical behavior across studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐完成签到 ,获得积分0
刚刚
思源应助年轻的咖啡豆采纳,获得10
刚刚
2秒前
科研通AI5应助junc采纳,获得20
2秒前
绿洲完成签到,获得积分10
3秒前
3秒前
yf_zhu发布了新的文献求助10
3秒前
正直亦旋发布了新的文献求助10
3秒前
4秒前
华仔应助招财不肥采纳,获得10
4秒前
健康的梦曼完成签到 ,获得积分10
4秒前
最最最发布了新的文献求助10
4秒前
科研是什么鬼完成签到,获得积分10
6秒前
6秒前
7秒前
欢喜素阴完成签到 ,获得积分10
8秒前
yirenli完成签到,获得积分10
8秒前
希望天下0贩的0应助DAYTOY采纳,获得10
8秒前
狮子座完成签到,获得积分10
8秒前
爆米花应助润润轩轩采纳,获得10
8秒前
10秒前
熊boy完成签到,获得积分10
10秒前
1233完成签到,获得积分10
10秒前
Chang发布了新的文献求助10
10秒前
111222发布了新的文献求助50
10秒前
wxd发布了新的文献求助10
11秒前
上官若男应助浅笑采纳,获得10
12秒前
英姑应助Lxxixixi采纳,获得10
12秒前
斯文败类应助lichaoyes采纳,获得10
12秒前
aaaaa完成签到,获得积分10
12秒前
唉呦嘿发布了新的文献求助10
13秒前
共享精神应助迅速宛筠采纳,获得10
13秒前
上上谦应助酷炫过客采纳,获得10
13秒前
脑洞疼应助酷炫过客采纳,获得10
14秒前
千幻发布了新的文献求助10
14秒前
14秒前
15秒前
英俊的铭应助俎树同采纳,获得10
16秒前
16秒前
liyiren完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762