清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy

医学 接收机工作特性 荟萃分析 败血症 检查表 机器学习 重症监护医学 重症监护室 梅德林 急诊医学 感染性休克 分级(工程) 人工智能 重症监护 内科学 计算机科学 法学 认知心理学 土木工程 工程类 政治学 心理学
作者
Lucas M. Fleuren,Thomas Klausch,Charlotte Zwager,Linda J. Schoonmade,Tingjie Guo,Luca F. Roggeveen,Eleonora L. Swart,Armand R. J. Girbes,Patrick Thoral,Ari Ercole,Mark Hoogendoorn,Paul Elbers
出处
期刊:Intensive Care Medicine [Springer Nature]
卷期号:46 (3): 383-400 被引量:350
标识
DOI:10.1007/s00134-019-05872-y
摘要

Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhoulangorange完成签到 ,获得积分10
12秒前
JamesPei应助尽我所能采纳,获得10
12秒前
念工人完成签到,获得积分10
15秒前
大雁完成签到 ,获得积分10
19秒前
XMUZH完成签到 ,获得积分10
21秒前
科研通AI2S应助MCCCCC_6采纳,获得30
30秒前
theo完成签到 ,获得积分10
33秒前
yinhe完成签到 ,获得积分10
37秒前
45秒前
罗小罗同学完成签到,获得积分10
50秒前
尽我所能发布了新的文献求助10
50秒前
尽我所能完成签到,获得积分10
59秒前
陈秋完成签到,获得积分10
1分钟前
黄光完成签到,获得积分10
1分钟前
1分钟前
gaoxiaogao完成签到 ,获得积分10
1分钟前
xun发布了新的文献求助10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
思源应助xun采纳,获得10
1分钟前
1分钟前
大熊发布了新的文献求助10
1分钟前
老宇126完成签到,获得积分10
1分钟前
1分钟前
xun发布了新的文献求助10
2分钟前
Lucas应助xun采纳,获得10
2分钟前
宸浅完成签到 ,获得积分10
2分钟前
清净163完成签到,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
Jasen完成签到 ,获得积分10
2分钟前
晓薇完成签到,获得积分10
3分钟前
清净126完成签到 ,获得积分10
3分钟前
念念完成签到 ,获得积分10
3分钟前
慕青应助xun采纳,获得10
3分钟前
来一斤这种鱼完成签到 ,获得积分10
3分钟前
Judy完成签到 ,获得积分0
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
郑雅柔完成签到 ,获得积分10
3分钟前
fly发布了新的文献求助10
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162359
求助须知:如何正确求助?哪些是违规求助? 2813331
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316544
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142