亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Guided Depth Map Super-Resolution Using Recumbent Y Network

深度图 人工智能 计算机科学 计算机视觉 棱锥(几何) 保险丝(电气) 不连续性分类 图像分辨率 联营 特征(语言学) 模式识别(心理学) 残余物 图像(数学) 数学 算法 哲学 数学分析 工程类 电气工程 语言学 几何学
作者
Tao Li,Xiucheng Dong,Hongwei Lin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 122695-122708 被引量:10
标识
DOI:10.1109/access.2020.3007667
摘要

Low spatial resolution is a well-known problem for depth maps captured by low-cost consumer depth cameras. Depth map super-resolution (SR) can be used to enhance the resolution and improve the quality of depth maps. In this paper, we propose a recumbent Y network (RYNet) to integrate the depth information and intensity information for depth map SR. Specifically, we introduce two weight-shared encoders to respectively learn multi-scale depth and intensity features, and a single decoder to gradually fuse depth information and intensity information for reconstruction. We also design a residual channel attention based atrous spatial pyramid pooling structure to further enrich the feature's scale diversity and exploit the correlations between multi-scale feature channels. Furthermore, the violations of co-occurrence assumption between depth discontinuities and intensity edges will generate texture-transfer and depth-bleeding artifacts. Thus, we propose a spatial attention mechanism to mitigate the artifacts by adaptively learning the spatial relevance between intensity features and depth features and reweighting the intensity features before fusion. Experimental results demonstrate the superiority of the proposed RYNet over several state-of-the-art depth map SR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roy完成签到,获得积分10
7秒前
bkagyin应助hkxfg采纳,获得10
10秒前
20秒前
02发布了新的文献求助10
27秒前
运运完成签到 ,获得积分10
30秒前
Maple发布了新的文献求助10
37秒前
wzzznh完成签到 ,获得积分10
48秒前
Maple完成签到,获得积分10
52秒前
端庄亦巧完成签到 ,获得积分10
53秒前
科研通AI5应助jacs111采纳,获得10
53秒前
CodeCraft应助罗舒采纳,获得10
56秒前
1分钟前
1分钟前
jacs111发布了新的文献求助10
1分钟前
Zjc0913完成签到 ,获得积分10
1分钟前
libob完成签到,获得积分10
1分钟前
Aaaaa发布了新的文献求助10
1分钟前
jacs111完成签到,获得积分10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Aaaaa完成签到,获得积分20
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
1分钟前
流萤发布了新的文献求助30
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
鱼羊明完成签到 ,获得积分10
1分钟前
tufei完成签到,获得积分10
1分钟前
暮冬完成签到 ,获得积分10
1分钟前
流萤完成签到,获得积分10
1分钟前
瑞瑞刘完成签到 ,获得积分10
2分钟前
土豪的摩托完成签到 ,获得积分10
2分钟前
z610938841完成签到,获得积分10
2分钟前
雨yu完成签到 ,获得积分10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
脑洞疼应助邓邓采纳,获得10
2分钟前
3分钟前
笨蛋美女完成签到 ,获得积分10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214