计算机科学
多核学习
水准点(测量)
人工智能
鉴定(生物学)
模式识别(心理学)
机器学习
最小二乘函数近似
核(代数)
核方法
支持向量机
对偶(语法数字)
算法
数学优化
数学
统计
组合数学
文学类
艺术
生物
植物
估计员
地理
大地测量学
作者
Yongsheng Ding,Jijun Tang,Fei Guo
标识
DOI:10.1016/j.knosys.2020.106254
摘要
Detection of Drug–Target Interactions (DTIs) is the time-consuming and laborious experiment via biochemical approaches. Machine learning based methods have been widely used to mine meaningful information of drug research. In this study, we establish a novel computational method to predict DTIs via Dual Laplacian Regularized Least Squares model (DLapRLS) with Hilbert–Schmidt Independence Criterion-based Multiple Kernel Learning (HSIC-MKL). Multiple kernels are built from different information sources (drug and target spaces). Then, above corresponding kernels are integrated by HSIC-MKL. At last, DLapRLS model is trained by Alternating Least Squares Algorithm (ALSA) and employed to predict new DTIs. On four benchmark datasets, the results of our method are comparable and even better than existing models.
科研通智能强力驱动
Strongly Powered by AbleSci AI