CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances

计算机科学 编码器 水准点(测量) 卷积神经网络 人工智能 基线(sea) 模式识别(心理学) 机器学习 解码方法 算法 大地测量学 海洋学 操作系统 地质学 地理
作者
Yuzhu Ji,Haijun Zhang,Zhao Zhang,Ming Liu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:546: 835-857 被引量:203
标识
DOI:10.1016/j.ins.2020.09.003
摘要

Convolutional neural network (CNN)-based encoder-decoder models have profoundly inspired recent works in the field of salient object detection (SOD). With the rapid development of encoder-decoder models with respect to most pixel-level dense prediction tasks, an empirical study still does not exist that evaluates performance by applying a large body of encoder-decoder models on SOD tasks. In this paper, instead of limiting our survey to SOD methods, a broader view is further presented from the perspective of fundamental architectures of key modules and structures in CNN-based encoder-decoder models for pixel-level dense prediction tasks. Moreover, we focus on performing SOD by leveraging deep encoder-decoder models, and present an extensive empirical study on baseline encoder-decoder models in terms of different encoder backbones, loss functions, training batch sizes, and attention structures. Moreover, state-of-the-art encoder-decoder models adopted from semantic segmentation and deep CNN-based SOD models are also investigated. New baseline models that can outperform state-of-the-art performance were discovered. In addition, these newly discovered baseline models were further evaluated on three video-based SOD benchmark datasets. Experimental results demonstrate the effectiveness of these baseline models on both image- and video-based SOD tasks. This empirical study is concluded by a comprehensive summary which provides suggestions on future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大秀子完成签到,获得积分10
刚刚
艾哥完成签到,获得积分10
1秒前
情怀应助even采纳,获得10
1秒前
科研搬运工完成签到,获得积分0
2秒前
2秒前
3秒前
小火孩发布了新的文献求助10
3秒前
4秒前
4秒前
充电宝应助帝国超级硕士采纳,获得10
5秒前
在水一方应助cdddddy采纳,获得10
5秒前
鱼生完成签到,获得积分10
5秒前
6秒前
淡定的纹完成签到,获得积分10
7秒前
无奈凡波完成签到 ,获得积分10
7秒前
Kenny发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
搜集达人应助淡淡夕阳采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Survivor应助科研通管家采纳,获得10
7秒前
leaf完成签到,获得积分10
7秒前
大模型应助科研通管家采纳,获得20
7秒前
打打应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得30
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958393
求助须知:如何正确求助?哪些是违规求助? 3504692
关于积分的说明 11119524
捐赠科研通 3235856
什么是DOI,文献DOI怎么找? 1788584
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605