已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a model to predict survival in colorectal cancer using a gradient-boosted machine

列线图 医学 乙状结肠镜检查 结直肠癌 接收机工作特性 内科学 队列 前瞻性队列研究 肿瘤科 癌症 机器学习 结肠镜检查 计算机科学
作者
Jean‐Emmanuel Bibault,Daniel T. Chang,Lei Xing
出处
期刊:Gut [BMJ]
卷期号:70 (5): 884-889 被引量:36
标识
DOI:10.1136/gutjnl-2020-321799
摘要

The success of treatment planning relies critically on our ability to predict the potential benefit of a therapy. In colorectal cancer (CRC), several nomograms are available to predict different outcomes based on the use of tumour specific features. Our objective is to provide an accurate and explainable prediction of the risk to die within 10 years after CRC diagnosis, by incorporating the tumour features and the patient medical and demographic information.In the prostate, lung, colorectal and ovarian cancer screening (PLCO) Trial, participants (n=154 900) were randomised to screening with flexible sigmoidoscopy, with a repeat screening at 3 or 5 years, or to usual care. We selected patients who were diagnosed with CRC during the follow-up to train a gradient-boosted model to predict the risk to die within 10 years after CRC diagnosis. Using Shapley values, we determined the 20 most relevant features and provided explanation to prediction.During the follow-up, 2359 patients were diagnosed with CRC. Median follow-up was 16.8 years (14.4-18.9) for mortality. In total, 686 patients (29%) died from CRC during the follow-up. The dataset was randomly split into a training (n=1887) and a testing (n=472) dataset. The area under the receiver operating characteristic was 0.84 (±0.04) and accuracy was 0.83 (±0.04) with a 0.5 classification threshold. The model is available online for research use.We trained and validated a model with prospective data from a large multicentre cohort of patients. The model has high predictive performances at the individual scale. It could be used to discuss treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
子桑南发布了新的文献求助300
1秒前
1秒前
王王发布了新的文献求助10
1秒前
笨笨的秋发布了新的文献求助10
2秒前
满意的柏柳应助yelie采纳,获得10
4秒前
5秒前
ured发布了新的文献求助10
5秒前
狗不李完成签到,获得积分20
5秒前
7秒前
10秒前
笑笑发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
10秒前
12秒前
jihenyouai0213完成签到,获得积分10
12秒前
14秒前
拉长的沛芹完成签到,获得积分10
15秒前
现代的自行车完成签到 ,获得积分10
15秒前
17秒前
笑笑完成签到,获得积分10
17秒前
梦璃安发布了新的文献求助10
18秒前
打打应助ured采纳,获得10
18秒前
19秒前
19秒前
vippp发布了新的文献求助10
19秒前
爆米花应助咿咿呀呀采纳,获得10
19秒前
LFJ完成签到,获得积分10
20秒前
默默荔枝发布了新的文献求助10
21秒前
junjun完成签到,获得积分10
21秒前
22秒前
笨笨的秋完成签到,获得积分10
24秒前
25秒前
26秒前
28秒前
虚拟的麦片完成签到,获得积分20
28秒前
28秒前
bing完成签到,获得积分10
31秒前
梦璃安完成签到,获得积分10
31秒前
hhhhhhhhhhh发布了新的文献求助10
31秒前
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291