High-order Markov-switching portfolio selection with capital gain tax

文件夹 投资组合优化 资本利得 资本市场线 计算机科学 订单(交换) 数学优化 经济 金融经济学 财务 数学 市场深度 古生物学 股票市场 生物
作者
Sini Guo,Wai‐Ki Ching
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:165: 113915-113915 被引量:13
标识
DOI:10.1016/j.eswa.2020.113915
摘要

The uncertainties of market state and returns of risky assets both affect the investors' decisions significantly. It is necessary and prudent to consider the regime-switching mechanism of market states in portfolio selection. Different from the traditional first-order Markov-switching portfolio selection studies, we consider a high-order Markov transition process of market state, which can better depict the market state changes and incorporate more market information into portfolio selection due to the financial market has the long memory property. The capital gain tax is treated as the trading cost of which the tax rate not only depends on the holding periods of risky assets but also on the trading volume. In addition, the capital gain–loss offsetting is studied explicitly where the gain–loss offsetting in the same period and capital loss carry-over effect in different periods are considered simultaneously. A high-order Markov-switching portfolio selection model (HOMSPSM) is proposed. The Monte Carlo simulation is employed to approximate the expected values and variances of the complicated random returns, and the Monte Carlo simulation based particle swarm optimization algorithm (MCPSO) is designed to obtain the optimal investment strategy. Finally, simulated and practical numerical experiments are provided to verify the effectiveness and practicability of HOMSPSM and MCPSO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojiezhang发布了新的文献求助10
刚刚
LL发布了新的文献求助10
1秒前
1秒前
1秒前
fan关闭了fan文献求助
1秒前
2秒前
乐乐应助ddup采纳,获得20
2秒前
等待的mango应助凯凯采纳,获得10
3秒前
彭于晏应助凯凯采纳,获得10
3秒前
3秒前
caicai发布了新的文献求助10
4秒前
gy完成签到,获得积分10
5秒前
Asura完成签到,获得积分10
5秒前
科目三应助WSCNOK采纳,获得10
6秒前
pp发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
xiaojiezhang发布了新的文献求助10
9秒前
10秒前
1Yer6完成签到 ,获得积分10
10秒前
11秒前
震速流完成签到 ,获得积分10
11秒前
12秒前
hilm应助Iridesent0v0采纳,获得10
14秒前
15秒前
丘丘发布了新的文献求助10
15秒前
丫丫发布了新的文献求助10
16秒前
16秒前
19秒前
FashionBoy应助清新采纳,获得10
19秒前
19秒前
20秒前
zzcres完成签到,获得积分10
21秒前
22秒前
不配.应助柚子茶采纳,获得150
22秒前
23秒前
pp完成签到,获得积分10
23秒前
耳喃发布了新的文献求助10
24秒前
所所应助风信子采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474