Multi-scale structural kernel representation for object detection

判别式 计算机科学 核(代数) 模式识别(心理学) 人工智能 卷积神经网络 规范化(社会学) 目标检测 代表(政治) 深度学习 数学 组合数学 社会学 政治学 政治 法学 人类学
作者
Hao Wang,Qilong Wang,Peihua Li,Wangmeng Zuo
出处
期刊:Pattern Recognition [Elsevier]
卷期号:110: 107593-107593 被引量:20
标识
DOI:10.1016/j.patcog.2020.107593
摘要

Existing high-performance object detection methods greatly benefit from the powerful representation ability of deep convolutional neural networks (CNNs). Recent researches show that integration of high-order statistics remarkably improves the representation ability of deep CNNs. However, high-order statistics for object detection lie in two challenges. Firstly, previous methods insert high-order statistics into deep CNNs as global representations, which lose spatial information of inputs, and so are not applicable to object detection. Furthermore, high-order statistics have special structures, which should be considered for proper use of high-order statistics. To overcome above challenges, this paper proposes a Multi-scale Structural Kernel Representation (MSKR) for improving performance of object detection. Our MSKR is developed based on the polynomial kernel approximation, which does not only draw into high-order statistics but also preserve the spatial information of input. To consider geometry structures of high-order representations, a feature power normalization method is introduced before computation of kernel representation. Comparing with the most commonly used first-order statistics in existing CNN-based detectors, our MSKR can generate more discriminative representations, and so be flexibly integrated into deep CNNs for improving performance of object detection. By adopting the proposed MSKR to existing object detection methods (i.e., Faster R-CNN, FPN, Mask R-CNN and RetinaNet), it achieves clear improvement on three widely used benchmarks, while obtaining very competitive performance with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可靠的马丁应助Toni采纳,获得10
2秒前
sawashiro27关注了科研通微信公众号
2秒前
3秒前
流苏发布了新的文献求助10
3秒前
4秒前
cq发布了新的文献求助10
4秒前
烟花应助wly9399375采纳,获得10
4秒前
英俊的铭应助shanshanerchuan采纳,获得10
4秒前
追寻咖啡豆完成签到,获得积分10
5秒前
DSL、完成签到,获得积分10
5秒前
NexusExplorer应助charles采纳,获得10
6秒前
6秒前
Alvin发布了新的文献求助10
6秒前
7秒前
田様应助提莫大将军采纳,获得10
7秒前
7秒前
xiaoluuu发布了新的文献求助10
8秒前
emma发布了新的文献求助10
8秒前
8秒前
8秒前
lily完成签到 ,获得积分10
8秒前
8秒前
maoge完成签到,获得积分10
9秒前
9秒前
suofzcn应助胡世龙采纳,获得60
10秒前
11秒前
11秒前
Weining发布了新的文献求助10
12秒前
gaolengtu发布了新的文献求助10
12秒前
ding关注了科研通微信公众号
12秒前
13秒前
研友_nPPz9n发布了新的文献求助10
13秒前
Jasper应助wp4455777采纳,获得10
13秒前
Lm发布了新的文献求助10
13秒前
14秒前
Max发布了新的文献求助10
14秒前
共享精神应助emma采纳,获得10
15秒前
搜集达人应助鞑靼采纳,获得10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655