Multi-scale structural kernel representation for object detection

判别式 计算机科学 核(代数) 模式识别(心理学) 人工智能 卷积神经网络 规范化(社会学) 目标检测 代表(政治) 深度学习 数学 组合数学 社会学 政治学 政治 法学 人类学
作者
Hao Wang,Qilong Wang,Peihua Li,Wangmeng Zuo
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:110: 107593-107593 被引量:20
标识
DOI:10.1016/j.patcog.2020.107593
摘要

Existing high-performance object detection methods greatly benefit from the powerful representation ability of deep convolutional neural networks (CNNs). Recent researches show that integration of high-order statistics remarkably improves the representation ability of deep CNNs. However, high-order statistics for object detection lie in two challenges. Firstly, previous methods insert high-order statistics into deep CNNs as global representations, which lose spatial information of inputs, and so are not applicable to object detection. Furthermore, high-order statistics have special structures, which should be considered for proper use of high-order statistics. To overcome above challenges, this paper proposes a Multi-scale Structural Kernel Representation (MSKR) for improving performance of object detection. Our MSKR is developed based on the polynomial kernel approximation, which does not only draw into high-order statistics but also preserve the spatial information of input. To consider geometry structures of high-order representations, a feature power normalization method is introduced before computation of kernel representation. Comparing with the most commonly used first-order statistics in existing CNN-based detectors, our MSKR can generate more discriminative representations, and so be flexibly integrated into deep CNNs for improving performance of object detection. By adopting the proposed MSKR to existing object detection methods (i.e., Faster R-CNN, FPN, Mask R-CNN and RetinaNet), it achieves clear improvement on three widely used benchmarks, while obtaining very competitive performance with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
等等发布了新的文献求助10
1秒前
曾宪俊完成签到 ,获得积分10
1秒前
寂寞的小夏完成签到,获得积分10
2秒前
谨慎太兰发布了新的文献求助10
2秒前
单纯行天完成签到,获得积分10
2秒前
3秒前
舒适笑容发布了新的文献求助10
3秒前
3秒前
王昭完成签到,获得积分10
3秒前
4秒前
孙文远完成签到,获得积分10
5秒前
5秒前
5秒前
Oliver发布了新的文献求助10
6秒前
Mr.Left完成签到,获得积分10
6秒前
热心市民小红花应助呜呜采纳,获得10
6秒前
02发布了新的文献求助10
6秒前
沚沐完成签到,获得积分10
7秒前
7秒前
李健的小迷弟应助yaofox1采纳,获得10
8秒前
单纯行天发布了新的文献求助10
8秒前
9秒前
酷酷的修洁完成签到,获得积分20
9秒前
充电宝应助lorentzh采纳,获得10
10秒前
烟花应助缥缈的乌冬面采纳,获得10
10秒前
syhjxk发布了新的文献求助10
11秒前
jj关闭了jj文献求助
11秒前
Alex发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
13秒前
早期早睡发布了新的文献求助10
14秒前
15秒前
15秒前
多余发布了新的文献求助10
16秒前
可爱的函函应助细心青烟采纳,获得10
16秒前
wwwzy完成签到,获得积分20
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091