Machine Learning Assisted Design Approach for Developing γ′-Strengthened Co-Ni-Base Superalloys

索尔夫斯 高温合金 材料科学 五元 冶金 合金 微观结构 热力学 稳健性(进化) 化学 生物化学 基因 物理
作者
Min Zou,Wendao Li,Longfei Li,Ji‐Cheng Zhao,Qiang Feng
出处
期刊:The minerals, metals & materials series 卷期号:: 937-947 被引量:9
标识
DOI:10.1007/978-3-030-51834-9_92
摘要

As a new class of promising high-temperature materials, Co–Al–W-base alloys have been developed by alloying additions to improve the microstructure stability and other properties. However, the optimization of Co–Al–W-base alloys becomes more complicated with increasing variety and content of alloying elements. In this study, an accelerated approach to design γ′-strengthened Co–Ni-base superalloys with well-balanced properties was developed, by integrating the diffusion-multiple approach and machine-learning tools. A large amount of experimental data was obtained using the diffusion-multiple approach and fed into machine learningMachine learning tools to establish the relationship between alloy compositions and important thermodynamic and microstructural parameters such as the phase constituent, the γ′ phase fraction (Fγ′) and the γ′ solvus temperatureγ′ solvus temperature (Tγ′). The established machine-learning models were then employed to predict the characteristic parameters of multicomponent Co-Ni-base superalloys containing up to nine elements (Co, Ni, Al, W, Ta, Ti, Cr, Mo, Nb), even though most of the collected compositions from experiments were quinary to septenary alloys. Using the predicted results from the models and the computational thermodynamics tools, a multicomponent Co–Ni-base superalloy aimed at the application as single crystal blades was designed and characterized to test the reliability and robustness of the novel design approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率抽屉完成签到 ,获得积分10
1秒前
2秒前
Orange应助大力的映梦采纳,获得10
2秒前
蔷薇完成签到,获得积分10
3秒前
爱吃芒果果儿完成签到 ,获得积分10
4秒前
charlotte3228发布了新的文献求助10
4秒前
4秒前
daliu完成签到,获得积分10
6秒前
海绵宝宝完成签到,获得积分10
7秒前
故意的篮球完成签到,获得积分20
8秒前
8秒前
9秒前
yinyue发布了新的文献求助10
9秒前
小杨完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
科yt完成签到,获得积分10
10秒前
王烨发布了新的文献求助10
10秒前
NN大可爱完成签到 ,获得积分10
10秒前
12秒前
我有柳叶刀完成签到,获得积分10
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
mmyhn应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
嗯哼应助科研通管家采纳,获得20
14秒前
14秒前
feng完成签到,获得积分10
15秒前
15秒前
16秒前
小二郎应助EthanChan采纳,获得10
17秒前
哆啦小鱼完成签到,获得积分10
19秒前
细心雨兰发布了新的文献求助50
26秒前
newgeno2003完成签到,获得积分10
27秒前
27秒前
华仔应助小鹿5460采纳,获得10
28秒前
英姑应助学术射手采纳,获得50
28秒前
田様应助云风采纳,获得10
30秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685