清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction

高光谱成像 VNIR公司 遥感 环境科学 像素 特征(语言学) 人工神经网络 土壤科学 人工智能 模式识别(心理学) 计算机科学 地质学 语言学 哲学
作者
Depin Ou,Kun Tan,Jian Lai,Xiuping Jia,Xue Wang,Yu Chen,Jie Li
出处
期刊:Geoderma [Elsevier]
卷期号:385: 114875-114875 被引量:57
标识
DOI:10.1016/j.geoderma.2020.114875
摘要

A number of algorithms have been developed for soil organic matter (SOM) or soil heavy metal detection in airborne hyperspectral imagery with high spatial and spectral resolutions. However, to achieve improved land management, the problems of the inconsistent features and low accuracy still need to be solved. In this paper, we propose a novel regression model to estimate the concentrations of SOM, arsenic (As), and chromium (Cr) in soil. Firstly, a hyperspectral unmixing technique is utilized to extract the bare soil pixels. We then combine the absorption depth feature after continuum removal, the original absorption feature, the band ratio feature, and the first-order differential feature, to form a set of features for parameter inversion. To solve the over-fitting problem caused by the small number of samples and the weak expression problem, the semi-supervised deep neural network regression (Semi-DNNR) model is introduced. The experimental were conducted using several datasets collected by HyMap, which is an airborne hyperspectral imaging sensor in VNIR-SWIR spectral range in Yitong county, Jilin province, China. The proposed Semi-DNNR model shows a good performance in this study, with the prediction Rp2 values for SOM, As, and Cr being 0.71, 0.82, and 0.63, respectively. After the spatial distribution map of the soil components of the study area was overlaid with the stream network, which was obtained from the digital elevation model (DEM). It was found that snowmelt, the melting of frozen soil, and surface rainfall can transport SOM to low-lying areas. A similar phenomenon was also observed for As, due to SOM adsorption and dissolved organic matter (DOM) complexation. A comparison of the proposed method with both feature selection methods (competitive adaptive reweighted sampling (CARS), genetic algorithm (GA)) and regression methods (partial least squares regression (PLSR), support vector regression (SVR)) shows that the proposed feature selection method is more robust than the CARS and GA methods. The proposed Semi-DNNR model was found to be at least 18.80% higher in prediction accuracy for As than the SVR or PLSR methods, at least 25.71% higher for Cr, and at least 19.73% higher for SOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fofo完成签到,获得积分10
1秒前
沙海沉戈完成签到,获得积分0
9秒前
我是站长才怪应助jia采纳,获得10
13秒前
lielizabeth完成签到 ,获得积分0
13秒前
39秒前
仇夜羽完成签到 ,获得积分0
46秒前
yyx完成签到 ,获得积分10
53秒前
李新光完成签到 ,获得积分10
1分钟前
虹归于叶完成签到 ,获得积分10
1分钟前
1分钟前
zhang完成签到 ,获得积分10
1分钟前
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
冰留完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
悠明夜月完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
岚12完成签到 ,获得积分10
1分钟前
yellowonion完成签到 ,获得积分10
2分钟前
哈哈哈完成签到,获得积分10
2分钟前
吡咯爱成环应助Singularity采纳,获得10
2分钟前
cadcae完成签到,获得积分10
2分钟前
土豪的灵竹完成签到 ,获得积分10
2分钟前
lyj完成签到 ,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
111完成签到 ,获得积分10
3分钟前
唯梦完成签到 ,获得积分10
3分钟前
3分钟前
logolush完成签到 ,获得积分10
3分钟前
科研通AI2S应助豆子采纳,获得10
3分钟前
3分钟前
小袁搜题完成签到,获得积分10
4分钟前
4分钟前
大水完成签到 ,获得积分10
4分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
4分钟前
布曲完成签到 ,获得积分10
4分钟前
小青年儿完成签到 ,获得积分10
4分钟前
4分钟前
xianyaoz完成签到 ,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440118
求助须知:如何正确求助?哪些是违规求助? 3036543
关于积分的说明 8964148
捐赠科研通 2724741
什么是DOI,文献DOI怎么找? 1494820
科研通“疑难数据库(出版商)”最低求助积分说明 690940
邀请新用户注册赠送积分活动 687419