Exploration-exploitation in multi-agent learning: Catastrophe theory meets game theory

后悔 有界函数 有限理性 理论(学习稳定性) 计算机科学 博弈论 数理经济学 集合(抽象数据类型) 理性代理人 数学 人工智能 机器学习 数学分析 程序设计语言
作者
Stefanos Leonardos,Georgios Piliouras
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:304: 103653-103653 被引量:8
标识
DOI:10.1016/j.artint.2021.103653
摘要

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL); however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove (1) that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly balances game-rewards and exploration-costs, i.e., costs from testing potentially suboptimal actions, and (2) that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games with bounded rationality, in arbitrary weighted potential games. In our main task, we then turn to measure the effect of exploration on collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助小郭采纳,获得10
2秒前
顾家老攻发布了新的文献求助10
2秒前
wwho_O完成签到 ,获得积分10
2秒前
白名单发布了新的文献求助30
5秒前
5秒前
5秒前
7秒前
jinyy完成签到,获得积分20
8秒前
李朝富发布了新的文献求助10
8秒前
缓慢的翅膀完成签到,获得积分10
9秒前
123456完成签到 ,获得积分10
9秒前
10秒前
科研通AI2S应助852采纳,获得10
10秒前
10秒前
烟花应助杜天豪采纳,获得10
11秒前
12秒前
SciGPT应助笑点低的映冬采纳,获得10
13秒前
科研民工李完成签到,获得积分10
14秒前
jiajia发布了新的文献求助10
15秒前
薰硝壤应助111采纳,获得10
15秒前
daisy完成签到,获得积分10
17秒前
18秒前
千俞发布了新的文献求助30
18秒前
好好学习完成签到,获得积分10
20秒前
标致的小霸王完成签到,获得积分10
20秒前
友好寻琴关注了科研通微信公众号
22秒前
23秒前
Lucas应助李麟采纳,获得10
24秒前
Carmen发布了新的文献求助30
25秒前
Hello应助霸道总裁旺德福采纳,获得10
25秒前
valorb完成签到,获得积分10
26秒前
研友_LkYKJZ完成签到,获得积分10
26秒前
jiajia完成签到,获得积分10
27秒前
白名单完成签到,获得积分10
27秒前
29秒前
1234完成签到,获得积分10
31秒前
31秒前
31秒前
传奇3应助张博采纳,获得10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140881
求助须知:如何正确求助?哪些是违规求助? 2791855
关于积分的说明 7800523
捐赠科研通 2448091
什么是DOI,文献DOI怎么找? 1302393
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601210