Fully Automated Segmentation and Shape Analysis of the Thoracic Aorta in Non–contrast-enhanced Magnetic Resonance Images of the German National Cohort Study

分割 医学 磁共振成像 数据集 放射科 基本事实 人工智能 胸主动脉 图像分割 计算机科学 核医学 模式识别(心理学) 对比度(视觉) 主动脉 外科
作者
Tobias Hepp,Marc Fischer,Moritz T. Winkelmann,Sonja Baldenhofer,Thomas Küstner,Konstantin Nikolaou,Bin Yang,Sergios Gatidis
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
卷期号:35 (6): 389-398 被引量:12
标识
DOI:10.1097/rti.0000000000000522
摘要

Purpose: The purpose of this study was to develop and validate a deep learning-based framework for automated segmentation and vessel shape analysis on non–contrast-enhanced magnetic resonance (MR) data of the thoracic aorta within the German National Cohort (GNC) MR study. Materials and Methods: One hundred data sets acquired in the GNC MR study were included (56 men, average age 53 y [22 to 72 y]). All participants had undergone non–contrast-enhanced MR imaging of the thoracic vessels. Automated vessel segmentation of the thoracic aorta was performed using a Convolutional Neural Network in a supervised setting with manually annotated data sets as the ground truth. Seventy data sets were used for training; 30 data sets were used for quantitative and qualitative evaluation. Automated shape analysis based on centerline extraction from segmentation masks was performed to derive a diameter profile of the vessel. For comparison, 2 radiologists measured vessel diameters manually. Results: Overall, automated aortic segmentation was successful, providing good qualitative analyses with only minor irregularities in 29 of 30 data sets. One data set with severe MR artifacts led to inadequate automated segmentation results. The mean Dice score of automated vessel segmentation was 0.85. Automated aortic diameter measurements were similar to manual measurements (average difference −0.9 mm, limits of agreement: −5.4 to 3.9 mm), with minor deviations in the order of the interreader agreement between the 2 radiologists (average difference −0.5 mm, limits of agreement: −5.8 to 4.8 mm). Conclusion: Automated segmentation and shape analysis of the thoracic aorta is feasible with high accuracy on non–contrast-enhanced MR imaging using the proposed deep learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liangmh完成签到,获得积分10
刚刚
优雅的母鸡完成签到,获得积分10
刚刚
Yt完成签到 ,获得积分10
1秒前
方圆学术完成签到,获得积分10
2秒前
Beyond095完成签到,获得积分10
2秒前
2秒前
2秒前
时光友岸完成签到,获得积分10
2秒前
GY12发布了新的文献求助10
3秒前
小柯发布了新的文献求助10
3秒前
3秒前
阔达以山完成签到,获得积分10
3秒前
zzzz完成签到,获得积分10
3秒前
所所应助范德萨范德萨采纳,获得10
4秒前
qzy完成签到,获得积分10
4秒前
4秒前
couseware发布了新的文献求助10
5秒前
ao完成签到,获得积分10
5秒前
Doctor_Mill完成签到,获得积分10
5秒前
5秒前
yulian完成签到,获得积分10
5秒前
完美的书雁完成签到 ,获得积分10
5秒前
关关过完成签到,获得积分0
6秒前
6秒前
111222333发布了新的文献求助10
6秒前
8秒前
里里完成签到,获得积分10
8秒前
lin发布了新的文献求助10
8秒前
马焕完成签到,获得积分20
9秒前
9秒前
萌萌完成签到,获得积分10
9秒前
绾宸发布了新的文献求助10
9秒前
云舒发布了新的文献求助10
10秒前
连衣裙发布了新的文献求助10
10秒前
有夜空的地方必然有星河完成签到 ,获得积分10
10秒前
Waaly完成签到,获得积分10
10秒前
wsq完成签到,获得积分10
11秒前
细心的日记本完成签到,获得积分10
11秒前
学术z完成签到,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763815
求助须知:如何正确求助?哪些是违规求助? 3308392
关于积分的说明 10144319
捐赠科研通 3023510
什么是DOI,文献DOI怎么找? 1659581
邀请新用户注册赠送积分活动 792779
科研通“疑难数据库(出版商)”最低求助积分说明 755217