Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images

医学 介入放射学 放射科 神经组阅片室 超声波 无线电技术 宫颈癌 淋巴结 癌症 阶段(地层学) 病理 内科学 神经学 生物 精神科 古生物学
作者
Xiance Jin,Yao Ai,Ji Zhang,Haiyan Zhu,Juebin Jin,Yinyan Teng,Bin Chen,Congying Xie
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (7): 4117-4124 被引量:52
标识
DOI:10.1007/s00330-020-06692-1
摘要

To investigate the feasibility of a noninvasive detection of lymph node metastasis (LNM) for early-stage cervical cancer (ECC) patients with radiomics methods based on the textural features from ultrasound images.One hundred seventy-two ECC patients between January 2014 and September 2018 with pathologically confirmed lymph node status (LNS) and preoperative ultrasound images were retrospectively reviewed. Regions of interest (ROIs) were delineated by a senior radiologist in the ultrasound images. LIFEx was applied to extract textural features for radiomics study. Least absolute shrinkage and selection operator (LASSO) regression was applied for dimension reduction and for selection of key features. A multivariable logistic regression analysis was adopted to build the radiomics signature. The Mann-Whitney U test was applied to investigate the correlation between radiomics and LNS for both training and validation cohorts. Receiver operating characteristic (ROC) curves were applied to evaluate the accuracy of the radiomics prediction models.A total of 152 radiomics features were extracted from ultrasound images, in which 6 features were significantly associated with LNS (p < 0.05). The radiomics signatures demonstrated a good discrimination between patients with LNM and non-LNM groups. The best radiomics performance model achieved an area under the curve (AUC) of 0.79 (95% confidence interval (CI), 0.71-0.88) in the training cohort and 0.77 (95% CI, 0.65-0.88) in the validation cohort.The feasibility of radiomics features from ultrasound images for the prediction of LNM in ECC was investigated. This noninvasive prediction method may be used to facilitate preoperative identification of LNS in patients with ECC.• Few studied had investigated the feasibility of radiomics based on ultrasound images for cervical cancer, even though it is the most common practice for gynecological cancer diagnosis and treatment. • The radiomics signatures based on ultrasound images demonstrated a good discrimination between patients with and without lymph node metastasis with an area under the curve (AUC) of 0.79 and 0.77 in the training and validation cohorts, respectively. • The radiomics model based on preoperative ultrasound images has the potential ability to predict lymph node status noninvasively in patients with early-state cervical cancer, so as to reduce the impact of invasive examination and to optimize the treatment choices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流流完成签到,获得积分10
1秒前
无声瀑布完成签到,获得积分10
1秒前
酷波er应助郭娅楠采纳,获得10
1秒前
wangye完成签到,获得积分10
1秒前
一号完成签到,获得积分10
1秒前
1秒前
妙奇完成签到,获得积分10
1秒前
No发布了新的文献求助20
1秒前
Ruby于发布了新的文献求助50
2秒前
flywo发布了新的文献求助10
3秒前
LZK完成签到,获得积分10
3秒前
4秒前
冰儿菲菲完成签到,获得积分10
4秒前
华仔应助流流采纳,获得10
4秒前
月月小光完成签到,获得积分10
4秒前
1111111111111完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
舒适的藏花完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
隐形傲霜完成签到 ,获得积分10
8秒前
8秒前
9秒前
张二狗完成签到,获得积分10
9秒前
MoodMeed完成签到,获得积分10
9秒前
闵夏完成签到,获得积分10
10秒前
勤恳的曼凡完成签到 ,获得积分10
10秒前
从容的雪碧完成签到,获得积分10
10秒前
10秒前
莫封叶发布了新的文献求助10
10秒前
脱壳金蝉完成签到,获得积分10
10秒前
Owen应助charry采纳,获得10
10秒前
flywo完成签到,获得积分10
11秒前
鱼儿会飞完成签到,获得积分10
11秒前
shezhinicheng完成签到,获得积分10
11秒前
沙河口大长硬完成签到,获得积分20
11秒前
12秒前
高贵的往事完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081