亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images

医学 介入放射学 放射科 神经组阅片室 超声波 无线电技术 宫颈癌 淋巴结 癌症 阶段(地层学) 病理 内科学 神经学 生物 精神科 古生物学
作者
Xiance Jin,Yao Ai,Ji Zhang,Haiyan Zhu,Juebin Jin,Yinyan Teng,Bin Chen,Congying Xie
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (7): 4117-4124 被引量:52
标识
DOI:10.1007/s00330-020-06692-1
摘要

To investigate the feasibility of a noninvasive detection of lymph node metastasis (LNM) for early-stage cervical cancer (ECC) patients with radiomics methods based on the textural features from ultrasound images.One hundred seventy-two ECC patients between January 2014 and September 2018 with pathologically confirmed lymph node status (LNS) and preoperative ultrasound images were retrospectively reviewed. Regions of interest (ROIs) were delineated by a senior radiologist in the ultrasound images. LIFEx was applied to extract textural features for radiomics study. Least absolute shrinkage and selection operator (LASSO) regression was applied for dimension reduction and for selection of key features. A multivariable logistic regression analysis was adopted to build the radiomics signature. The Mann-Whitney U test was applied to investigate the correlation between radiomics and LNS for both training and validation cohorts. Receiver operating characteristic (ROC) curves were applied to evaluate the accuracy of the radiomics prediction models.A total of 152 radiomics features were extracted from ultrasound images, in which 6 features were significantly associated with LNS (p < 0.05). The radiomics signatures demonstrated a good discrimination between patients with LNM and non-LNM groups. The best radiomics performance model achieved an area under the curve (AUC) of 0.79 (95% confidence interval (CI), 0.71-0.88) in the training cohort and 0.77 (95% CI, 0.65-0.88) in the validation cohort.The feasibility of radiomics features from ultrasound images for the prediction of LNM in ECC was investigated. This noninvasive prediction method may be used to facilitate preoperative identification of LNS in patients with ECC.• Few studied had investigated the feasibility of radiomics based on ultrasound images for cervical cancer, even though it is the most common practice for gynecological cancer diagnosis and treatment. • The radiomics signatures based on ultrasound images demonstrated a good discrimination between patients with and without lymph node metastasis with an area under the curve (AUC) of 0.79 and 0.77 in the training and validation cohorts, respectively. • The radiomics model based on preoperative ultrasound images has the potential ability to predict lymph node status noninvasively in patients with early-state cervical cancer, so as to reduce the impact of invasive examination and to optimize the treatment choices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
跳跃毒娘发布了新的文献求助10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得20
8秒前
jyy应助科研通管家采纳,获得10
8秒前
CodeCraft应助执着的飞荷采纳,获得10
9秒前
10秒前
热心翠霜完成签到,获得积分20
12秒前
12秒前
无奈棉花糖完成签到,获得积分10
13秒前
多情的忆之完成签到,获得积分10
14秒前
hq完成签到 ,获得积分10
15秒前
牛油果发布了新的文献求助10
15秒前
carols发布了新的文献求助10
15秒前
阿伟1999完成签到,获得积分10
18秒前
Yu发布了新的文献求助10
18秒前
舍得完成签到,获得积分10
20秒前
小钥匙完成签到 ,获得积分10
22秒前
隐形曼青应助小黑妞采纳,获得10
23秒前
29秒前
L1iiouo完成签到,获得积分10
31秒前
ANTianxu完成签到,获得积分10
32秒前
切尔顿发布了新的文献求助10
34秒前
有魅力的香烟完成签到,获得积分10
35秒前
Milton_z完成签到 ,获得积分0
35秒前
42秒前
10086发布了新的文献求助10
45秒前
复杂的金针菇完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763702
求助须知:如何正确求助?哪些是违规求助? 5543398
关于积分的说明 15405256
捐赠科研通 4899315
什么是DOI,文献DOI怎么找? 2635474
邀请新用户注册赠送积分活动 1583579
关于科研通互助平台的介绍 1538685