Deep learning for video compressive sensing

计算机科学 人工智能 卷积神经网络 深度学习 帧速率 计算机视觉 降噪 压缩传感 迭代重建 视频去噪 探测器 视频跟踪 视频处理 多视点视频编码 电信
作者
Mu Qiao,Ziyi Meng,Jiawei Ma,Xin Yuan
出处
期刊:APL photonics [AIP Publishing]
卷期号:5 (3) 被引量:150
标识
DOI:10.1063/1.5140721
摘要

We investigate deep learning for video compressive sensing within the scope of snapshot compressive imaging (SCI). In video SCI, multiple high-speed frames are modulated by different coding patterns and then a low-speed detector captures the integration of these modulated frames. In this manner, each captured measurement frame incorporates the information of all the coded frames, and reconstruction algorithms are then employed to recover the high-speed video. In this paper, we build a video SCI system using a digital micromirror device and develop both an end-to-end convolutional neural network (E2E-CNN) and a Plug-and-Play (PnP) framework with deep denoising priors to solve the inverse problem. We compare them with the iterative baseline algorithm GAP-TV and the state-of-the-art DeSCI on real data. Given a determined setup, a well-trained E2E-CNN can provide video-rate high-quality reconstruction. The PnP deep denoising method can generate decent results without task-specific pre-training and is faster than conventional iterative algorithms. Considering speed, accuracy, and flexibility, the PnP deep denoising method may serve as a baseline in video SCI reconstruction. To conduct quantitative analysis on these reconstruction algorithms, we further perform a simulation comparison on synthetic data. We hope that this study contributes to the applications of SCI cameras in our daily life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷珠完成签到,获得积分10
1秒前
是滴是滴发布了新的文献求助10
1秒前
Fufu发布了新的文献求助10
1秒前
微笑的水桃完成签到 ,获得积分10
1秒前
1秒前
郑州一大发布了新的文献求助10
1秒前
Jasper应助Lky采纳,获得10
2秒前
2秒前
笨笨善若发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
二十完成签到,获得积分10
3秒前
3秒前
DX发布了新的文献求助50
4秒前
小虾米完成签到,获得积分10
4秒前
4秒前
芒果完成签到,获得积分10
5秒前
5秒前
May应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
萧水白应助科研通管家采纳,获得10
5秒前
kking发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Emma应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
tuanhust应助科研通管家采纳,获得20
6秒前
tuanhust应助科研通管家采纳,获得20
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
青春发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
个性德天发布了新的文献求助10
6秒前
May应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得20
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958377
求助须知:如何正确求助?哪些是违规求助? 3504668
关于积分的说明 11119325
捐赠科研通 3235840
什么是DOI,文献DOI怎么找? 1788550
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605