Deep learning for video compressive sensing

计算机科学 人工智能 卷积神经网络 深度学习 帧速率 计算机视觉 降噪 压缩传感 迭代重建 视频去噪 探测器 视频跟踪 视频处理 多视点视频编码 电信
作者
Mu Qiao,Ziyi Meng,Jiawei Ma,Xin Yuan
出处
期刊:APL photonics [American Institute of Physics]
卷期号:5 (3) 被引量:155
标识
DOI:10.1063/1.5140721
摘要

We investigate deep learning for video compressive sensing within the scope of snapshot compressive imaging (SCI). In video SCI, multiple high-speed frames are modulated by different coding patterns and then a low-speed detector captures the integration of these modulated frames. In this manner, each captured measurement frame incorporates the information of all the coded frames, and reconstruction algorithms are then employed to recover the high-speed video. In this paper, we build a video SCI system using a digital micromirror device and develop both an end-to-end convolutional neural network (E2E-CNN) and a Plug-and-Play (PnP) framework with deep denoising priors to solve the inverse problem. We compare them with the iterative baseline algorithm GAP-TV and the state-of-the-art DeSCI on real data. Given a determined setup, a well-trained E2E-CNN can provide video-rate high-quality reconstruction. The PnP deep denoising method can generate decent results without task-specific pre-training and is faster than conventional iterative algorithms. Considering speed, accuracy, and flexibility, the PnP deep denoising method may serve as a baseline in video SCI reconstruction. To conduct quantitative analysis on these reconstruction algorithms, we further perform a simulation comparison on synthetic data. We hope that this study contributes to the applications of SCI cameras in our daily life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
旅行者N0501完成签到,获得积分10
1秒前
1秒前
愤怒的豌豆完成签到,获得积分10
1秒前
啵啵发布了新的文献求助10
1秒前
2秒前
fafa完成签到,获得积分20
2秒前
zzz发布了新的文献求助10
2秒前
天份完成签到,获得积分10
2秒前
Lei完成签到,获得积分10
3秒前
阳光的凡阳完成签到 ,获得积分10
3秒前
3秒前
伶俐雁枫发布了新的文献求助10
4秒前
4秒前
4秒前
大婷子发布了新的文献求助10
4秒前
chegen发布了新的文献求助10
4秒前
fafa发布了新的文献求助10
5秒前
6秒前
华仔应助光亮烤鸡采纳,获得10
6秒前
BowieHuang应助小熊采纳,获得10
6秒前
6秒前
6秒前
6秒前
chengzi关注了科研通微信公众号
6秒前
gfreezer完成签到,获得积分10
7秒前
巴菲猪完成签到,获得积分10
8秒前
xzy998应助1281440966采纳,获得10
9秒前
三七完成签到,获得积分10
9秒前
xxx完成签到,获得积分20
9秒前
赵景豪发布了新的文献求助30
9秒前
薄荷完成签到,获得积分10
9秒前
lakiliu完成签到,获得积分10
9秒前
Zx_1993应助细胞呵呵采纳,获得10
9秒前
SDLC完成签到,获得积分10
10秒前
ZC发布了新的文献求助10
10秒前
nini发布了新的文献求助10
10秒前
xx完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606