亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Spatial Distribution Characteristics and Source Analysis of Dissolved Organic Matter in Beiyun River].

溶解有机碳 环境科学 水生生态系统 有机质 水质 碎石 污染 水文学(农业) 河流生态系统 分水岭 生态系统 生态学 环境化学 化学 生物 机器学习 工程类 计算机科学 岩土工程
作者
Yongjuan Chen,Weixuan Hu,Shujiang Pang,Xiaoyan Wang
出处
期刊:PubMed 卷期号:37 (8): 3017-3025 被引量:3
标识
DOI:10.13277/j.hjkx.2016.08.024
摘要

Dissolved organic matter (DOM) in aquatic ecosystems has gained wide concern because of its influence on the light attenuation, nutrient availability and contaminant transport. Human activities strongly influence the DOM of rivers in different ways, including increased agricultural activities and industrial and domestic emissions. However, recent socio-economic development with rapid urban development has significantly enhanced the discharge of sewage, and has caused high loads of DOM, which in turn pose a great risk to aquatic ecosystems. To effectively guide water management for protecting aquatic ecosystem health, it is very critical to investigate the distribution and source of dissolved organic matter in urban rivers. In this study, the distribution and source analysis of DOM in Beiyun River were evaluated, where covers the most populated area with a population of 14 million, representing the most urbanized watershed of Beijing. Since the main receiving source of the river is treated and untreated wastewater in Beijing City, the water quality is highly polluted by anthropogenic inputs. However, information on DOM of Beiyun river has not been reported. Therefore, this study can not only reveal the biogeochemistry of DOM in Beiyu River, but also provide useful implications of pollution control for similar urban rivers. The fingerprint features were extracted from the Excitation-Emission Matrix Spectrum of fluorescent dissolved organic matter (FDOM) in 23 sampling sites of Beiyun river during November 2013. Three separate fluorescent components were identified by Parallel factor analysis (PARAFAC) model, including two humic-like components (C1: 240, 300/385 nm; C2: 255, 350/400 nm) and one protein-like component (C3: 230, 280/340 nm). The results indicated that humic-like materials were generally the dominated component of FDOM, accounting for 76.18% of the average total fluorescence intensity. Positive relationships were found between the fluorescence intensity and the concentrations of some water quality indicators, such as total nitrogen, ammonia nitrogen and total phosphorus, indicating the same sources of these components. Thus, the migration and transformation of nitrogen & phosphorus could also influence the level of FDOM. The distribution of total fluorescence intensity showed a distinctly different spatial pattern. The fluorescence intensity decreased firstly along the upstream to midstream continuum, and then increased from the midstream to downstream. The FDOM in the upstream could be attributed to the industrial effluent and agricultural runoff inputs. Among the upstream to downstream continuum, the content of FDOM in the midstream was the lowest. Limited domestic pollution was suggested as the major source. In the downstream, the sources of FDOM could be interpreted as industrial, agricultural wastewater and livestock wastewater discharge. The relative abundance of protein-like materials was markedly increased in this area, indicating the sources of DOM was highly impacted by human activities. In addition, our study also concluded that the removal efficiency of DOM in wastewater plants is not very desirable, which implied that stronger support for DOM removal in sewage system is needed to alleviate DOM pollution and improve water quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助飘逸的雪珍采纳,获得30
7秒前
8秒前
小于完成签到,获得积分10
8秒前
ling完成签到,获得积分10
12秒前
小于完成签到,获得积分10
19秒前
ling发布了新的文献求助10
19秒前
小邓完成签到,获得积分10
30秒前
ding应助麦麦采纳,获得10
37秒前
小豹子完成签到,获得积分10
40秒前
52秒前
麦麦发布了新的文献求助10
58秒前
朴素夜梦完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
可爱的函函应助hxx采纳,获得10
1分钟前
1分钟前
9527完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
无极微光应助啊z采纳,获得20
2分钟前
以菱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
hxx发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Lucas应助Sun采纳,获得10
3分钟前
wanci应助PAD采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
科研通AI6应助clearlove采纳,获得10
3分钟前
YYL完成签到 ,获得积分10
3分钟前
3分钟前
jdjf发布了新的文献求助10
4分钟前
4分钟前
充电宝应助jdjf采纳,获得10
4分钟前
丘比特应助hxx采纳,获得10
4分钟前
zznzn发布了新的文献求助10
4分钟前
zznzn完成签到,获得积分10
4分钟前
善学以致用应助zznzn采纳,获得10
4分钟前
asdf完成签到 ,获得积分10
4分钟前
5分钟前
活泼的鼠标完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671164
求助须知:如何正确求助?哪些是违规求助? 4910774
关于积分的说明 15134129
捐赠科研通 4829905
什么是DOI,文献DOI怎么找? 2586513
邀请新用户注册赠送积分活动 1540167
关于科研通互助平台的介绍 1498366