计算机科学
移动边缘计算
服务器
边缘计算
计算卸载
能源消耗
GSM演进的增强数据速率
云计算
计算机网络
边缘设备
分布式计算
任务(项目管理)
操作系统
人工智能
经济
管理
生物
生态学
作者
Arash Bozorgchenani,Farshad Mashhadi,Daniele Tarchi,Sergio A. Salinas Monroy
标识
DOI:10.1109/tmc.2020.2994232
摘要
In a mobile edge computing (MEC) network, mobile devices, also called edge clients, offload their computations to multiple edge servers that provide additional computing resources. Since the edge servers are placed at the network edge, e.g., cell-phone towers, transmission delays between edge servers and edge clients are shorter compared to those of cloud computing. In addition, edge clients can offload their tasks to other nearby edge clients with available computing resources by exploiting the Fog Computing (FC) paradigm. A major challenge in MEC and FC networks is to assign the tasks from edge clients to edge servers, as well as to other edge clients, in such a way that their tasks are completed with minimum energy consumption and minimum processing delay. In this paper, we model task offloading in MEC as a constrained multi-objective optimization problem (CMOP) that minimizes both the energy consumption and task processing delay of the mobile devices. To solve the CMOP, we design an evolutionary algorithm that can efficiently find a representative sample of the best trade-offs between energy consumption and task processing delay, i.e., the Pareto-optimal front. Compared to existing approaches for task offloading in MEC, we see that our approach finds offloading decisions with lower energy consumption and task processing delay.
科研通智能强力驱动
Strongly Powered by AbleSci AI