Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)

脑电图 计算机科学 支持向量机 人工智能 重性抑郁障碍 模式识别(心理学) 特征提取 接收机工作特性 分类器(UML) 语音识别 机器学习 心理学 精神科 心情
作者
Wajid Mumtaz,Likun Xia,Syed Saad Azhar Ali,Mohd Azhar Mohd Yasin,Muhammad Hussain,Aamir Saeed Malik
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:31: 108-115 被引量:190
标识
DOI:10.1016/j.bspc.2016.07.006
摘要

Abstract Recently, Electroencephalogram (EEG)-based computer-aided (CAD) techniques have shown their promise as decision-making tools to diagnose major depressive disorder (MDD) or simply depression. Although the research results have motivated the use of CAD techniques to help assist psychiatrists in clinics yet their clinical translation has been less clear and remains a research topic. In this paper, a proposed machine learning (ML) scheme was tested and validated with resting-state EEG data involving 33 MDD patients and 30 healthy controls. The EEG-derived measures such as power of different EEG frequency bands and EEG alpha interhemispheric asymmetry were investigated as input features to the proposed ML scheme to discriminate the MDD patients and healthy controls, and to prove their feasibility for diagnosing depression. The acquired EEG data were subjected to noise removal and feature extraction. As a result, a data matrix was constructed by the columns-wise concatenation of the extracted features. Furthermore, the z-score standardization was performed to standardize each column of the data matrix according to its mean and variance. The data matrix may have redundant and irrelevant features; therefore, to determine the most significant features, a weight was assigned to each feature based on its ability to separate the target classes according to the criterion, i.e., receiver operating characteristics (roc). Hence, only the most significant features were used for testing and training the classifier models: Logistic regression (LR), Support vector machine (SVM), and Naive Bayesian (NB). Finally, the classifier models were validated with 10-fold cross-validation that has provided the performance metrics such as test accuracy, sensitivity, and specificity. As a result of the investigations, most significant features such as EEG signal power and EEG alpha interhemispheric asymmetry from the brain areas such as frontal, temporal, parietal and occipital were found significant. In addition, the proposed ML framework proved automatic identification of aberrant EEG patterns specific to disease conditions and provide high classification results i.e., LR classifier (accuracy = 97.6%, sensitivity = 96.66%, specificity = 98.5%), NB classification (accuracy = 96.8%, sensitivity = 96.6%, specificity = 97.02%), and SVM (accuracy = 98.4%, sensitivity = 96.66%, specificity = 100%). In conclusion, the proposed ML scheme along with the EEG signal power and EEG alpha interhemispheric asymmetry are proved suitable as clinical diagnostic tools for MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
phobeeee完成签到 ,获得积分10
刚刚
自然1111发布了新的文献求助10
刚刚
q1356478314应助田济采纳,获得10
1秒前
胡图图完成签到,获得积分10
1秒前
1秒前
吕方完成签到,获得积分10
1秒前
3秒前
L-g-b完成签到,获得积分10
3秒前
杨多多完成签到,获得积分10
3秒前
LLLLLL完成签到,获得积分10
3秒前
www完成签到,获得积分10
4秒前
lenon发布了新的文献求助10
4秒前
1111发布了新的文献求助10
5秒前
6秒前
机智傀斗完成签到,获得积分10
6秒前
善良天抒完成签到 ,获得积分20
6秒前
宇宙中心发布了新的文献求助10
6秒前
小蘑菇应助吕方采纳,获得10
6秒前
夙夙发布了新的文献求助10
7秒前
TP完成签到,获得积分10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得30
8秒前
916应助科研通管家采纳,获得10
8秒前
Bio应助felix采纳,获得50
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Bio应助科研通管家采纳,获得10
8秒前
GEeZiii发布了新的文献求助10
8秒前
916应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
lucyliu完成签到 ,获得积分10
8秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650