Microfluidic blood–brain barrier model provides in vivo‐like barrier properties for drug permeability screening

血脑屏障 芯片上器官 体内 药物输送 微流控 紧密连接 化学 生物物理学 生物医学工程 材料科学 纳米技术 中枢神经系统 生物 医学 生物化学 神经科学 生物技术
作者
Ying I. Wang,Hasan Erbil Abaci,Michael L. Shuler
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:114 (1): 184-194 被引量:520
标识
DOI:10.1002/bit.26045
摘要

ABSTRACT Efficient delivery of therapeutics across the neuroprotective blood–brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High‐fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo‐like barrier properties in a microfluidic BBB model. This BBB‐on‐a‐chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo‐like values of trans‐endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm 2 on day 3 on chip and were sustained above 2000 Ω · cm 2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC‐dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB‐on‐a‐chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time‐based design of a microfluidic platform will enable integration with other organ modules to simulate multi‐organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184–194. © 2016 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王昭完成签到 ,获得积分10
刚刚
112233发布了新的文献求助20
刚刚
1秒前
1秒前
富华路完成签到,获得积分10
2秒前
2秒前
2秒前
壮观青亦完成签到 ,获得积分10
3秒前
祁问儿完成签到 ,获得积分10
4秒前
Ccccn完成签到,获得积分10
4秒前
5秒前
6秒前
不吃香菜发布了新的文献求助30
7秒前
RLV完成签到,获得积分10
7秒前
Shuaibin_Pei发布了新的文献求助10
9秒前
科研混子完成签到,获得积分10
10秒前
王志新完成签到,获得积分10
11秒前
dly7777发布了新的文献求助10
11秒前
cff完成签到,获得积分10
12秒前
老鼠咕噜发布了新的文献求助10
13秒前
leodu完成签到,获得积分10
13秒前
14秒前
zhuzhu发布了新的文献求助10
15秒前
科研通AI2S应助Shuaibin_Pei采纳,获得10
17秒前
勤恳睿渊发布了新的文献求助10
18秒前
fhbsdufh完成签到,获得积分10
18秒前
19秒前
20秒前
阳光皮带完成签到,获得积分20
21秒前
fawr完成签到 ,获得积分10
21秒前
dly7777完成签到,获得积分10
22秒前
24秒前
1234完成签到 ,获得积分10
24秒前
张然发布了新的文献求助10
24秒前
蛋妮完成签到 ,获得积分10
25秒前
panisa鹅完成签到,获得积分10
26秒前
坚强的严青完成签到,获得积分20
27秒前
春鸮鸟完成签到 ,获得积分10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511