Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods

校准 一致性(知识库) 计算机科学 面子(社会学概念) 激光跟踪器 过程(计算) 比例(比率) 扫描仪 算法 数据一致性 激光器 数学 人工智能 光学 统计 物理 社会学 操作系统 量子力学 社会科学
作者
Ling Wang,Bala Muralikrishnan,Prem Rachakonda,Daniel Sawyer
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:28 (6): 065016-065016 被引量:19
标识
DOI:10.1088/1361-6501/aa6929
摘要

Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fogsea发布了新的文献求助10
1秒前
春日防卫队Fire完成签到,获得积分10
2秒前
money发布了新的文献求助10
2秒前
3秒前
赢赢完成签到 ,获得积分10
3秒前
3秒前
bofu发布了新的文献求助20
5秒前
7秒前
7秒前
Zoe发布了新的文献求助30
8秒前
跳跃碧灵发布了新的文献求助10
8秒前
9秒前
云栈出谷发布了新的文献求助10
12秒前
搬砖的化学男应助sgssm采纳,获得10
14秒前
bofu发布了新的文献求助20
15秒前
qwe发布了新的文献求助10
16秒前
传奇3应助跳跃碧灵采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
18秒前
不配.应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
不配.应助科研通管家采纳,获得10
18秒前
科研通AI2S应助杨九斤Jenney采纳,获得10
19秒前
热爱生活的小彭完成签到,获得积分20
21秒前
腐殖酸发布了新的文献求助10
23秒前
孤独梦曼发布了新的文献求助10
24秒前
科研通AI2S应助qwe采纳,获得10
26秒前
28秒前
29秒前
ycw123完成签到,获得积分20
30秒前
33秒前
35秒前
仔仔发布了新的文献求助10
38秒前
38秒前
38秒前
景阑完成签到,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124565
求助须知:如何正确求助?哪些是违规求助? 2774891
关于积分的说明 7724521
捐赠科研通 2430358
什么是DOI,文献DOI怎么找? 1291087
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297