清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods

校准 一致性(知识库) 计算机科学 面子(社会学概念) 激光跟踪器 过程(计算) 比例(比率) 扫描仪 算法 数据一致性 激光器 数学 人工智能 光学 统计 物理 社会学 操作系统 社会科学 量子力学
作者
Ling Wang,Bala Muralikrishnan,Prem Rachakonda,Daniel Sawyer
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:28 (6): 065016-065016 被引量:19
标识
DOI:10.1088/1361-6501/aa6929
摘要

Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
限量版小祸害完成签到 ,获得积分10
3秒前
qiqi完成签到,获得积分10
5秒前
6秒前
我是老大应助Joy采纳,获得10
10秒前
qiqiqiqiqi完成签到 ,获得积分10
10秒前
Singularity完成签到,获得积分0
11秒前
早睡早起身体好Q完成签到 ,获得积分10
26秒前
沉静香氛完成签到 ,获得积分10
27秒前
naczx完成签到,获得积分0
30秒前
李志全完成签到 ,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
xgx984完成签到,获得积分10
34秒前
共享精神应助keke采纳,获得10
41秒前
Nene完成签到 ,获得积分10
43秒前
ChatGPT完成签到,获得积分10
44秒前
大模型应助Zhuyin采纳,获得10
45秒前
46秒前
MoodMeed完成签到,获得积分10
49秒前
49秒前
Joy发布了新的文献求助10
50秒前
keke发布了新的文献求助10
54秒前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
1分钟前
mengqing发布了新的文献求助10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
Lucas应助积极香菜采纳,获得10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
呼延坤完成签到 ,获得积分10
1分钟前
阿泽发布了新的文献求助10
1分钟前
非我完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
Zhuyin发布了新的文献求助10
2分钟前
2分钟前
coolru完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310