Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods

校准 一致性(知识库) 计算机科学 面子(社会学概念) 激光跟踪器 过程(计算) 比例(比率) 扫描仪 算法 数据一致性 激光器 数学 人工智能 光学 统计 物理 社会学 操作系统 量子力学 社会科学
作者
Ling Wang,Bala Muralikrishnan,Prem Rachakonda,Daniel Sawyer
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:28 (6): 065016-065016 被引量:19
标识
DOI:10.1088/1361-6501/aa6929
摘要

Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lin发布了新的文献求助10
1秒前
Ll发布了新的文献求助50
1秒前
2秒前
晚风发布了新的文献求助10
2秒前
zjuroc发布了新的文献求助20
3秒前
坦率的松发布了新的文献求助10
3秒前
xiaokai完成签到,获得积分10
3秒前
3秒前
3秒前
Czy完成签到,获得积分10
3秒前
4秒前
小满完成签到,获得积分10
4秒前
文忉嫣完成签到,获得积分10
4秒前
4秒前
5秒前
落后秋柳完成签到,获得积分20
5秒前
Akim应助zz采纳,获得10
5秒前
6秒前
三九发布了新的文献求助10
7秒前
科研通AI5应助czq采纳,获得30
7秒前
8秒前
8秒前
8秒前
坦率的松完成签到,获得积分10
8秒前
传奇3应助贤惠的正豪采纳,获得10
9秒前
111发布了新的文献求助10
9秒前
三寒鸦完成签到,获得积分10
9秒前
小木棉发布了新的文献求助10
9秒前
9秒前
少年郎完成签到,获得积分20
10秒前
CipherSage应助123lura采纳,获得10
10秒前
七七完成签到,获得积分10
10秒前
科研通AI2S应助小余采纳,获得10
10秒前
苹果骑士完成签到,获得积分10
10秒前
10秒前
shi hui应助jbhb采纳,获得10
11秒前
11秒前
11秒前
JUSTs0so发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762