Wiley Encyclopedia of Electrical and Electronics Engineering

百科全书 数码产品 工程类 电气工程 计算机科学 图书馆学
作者
F. Fiorillo,G. Bertotti,C. Appino,M. Pasquale
出处
期刊:Wiley eBooks [Wiley]
被引量:517
标识
DOI:10.1002/047134608x
摘要

A magnetic material is considered "soft" when its coercive fieldstrength is of the order of or lower than the earth's magnetic field (about 40 A/m).A soft magnetic material can be employed as an efficient flux multiplier in a large variety of devices, including transformers, generators, motors, to be used in the generation, distribution, and conversion of electrical energy, and a wide array of apparatus, from household appliances to scientific equipment.With a market around 20 billion in the year 2015 and annual growth rate around 5 %, soft magnetic materials (SMMs) are today an ever-important industrial product, offering challenging issues in properties understanding, preparation and characterization.An overview of the whole market of magnetic materials and the relative contributions of the different types of soft magnets is given in Fig. 1.SMMs were at the core of the development of the early industrial applications of electricity.The steel practice at the turn of the 19 th century was sufficiently developed to satisfy the increasing need of mild steel for the electrical machine cores.In 1900 Hadfield, Barrett, and Brown proved that, by adding around 2% in weight Si to the conventional magnetic steels, one could increase the permeability and decrease the energy losses [1].Fe-Si alloys were more expensive and more difficult to produce and gained slow acceptance.In addition, the poor control of the C content was to mask the prospective performances of this product, compared with mild steels.It took more than two decades, characterized by a gradual improvement of the metallurgical processes, for Fe-Si to become the material of choice for transformers.An empirical attitude towards research in magnetic materials was prevalent at the time and applications came well before theoretical understanding.This is the case of the Goss process, developed in the early 1930s, by which the first grain-oriented Fe-Si laminations could be industrially produced [2].In the years 1915-1923 G.W Elmen and co-workers at the Bell Telephone Laboratories systematically investigated alloys made of Fe and Ni, discovering the excellent soft magnetic properties of the permalloys (78% Ni) [3].J.L. Snoek and co-workers are credited for the successful industrial development of ferrites in the 1940's [4], following attempts dating back to the first decade of the century.The discovery in 1967 of the soft magnetic amorphous alloys again occurred nearly by chance [5], but it provided a fertile field for technologists and theorists.It enriched the landscape of applicative magnetic materials, while straining existing theories on magnetic ordering.More recently, the need for increasingly high frequencies of operation in miniaturized devices and the appearance of novel phenomena of fundamental and applicative interest in lowdimensionality systems have propelled the investigation of the properties and the preparation techniques of soft magnetic thin films [6] [7].Of special interest in this respect are the magnetoresistive phenomena observed in multilayer structures, where different layers can display, by combination of exchange interaction and applied field, either parallel or antiparallel magnetization.Spin-polarized conduction electrons diffusing through the layers suffer a magnetization orientation dependent scattering, according to their spin-up or spin-down character, resulting in a giant magnetoresistance effect [8]. GENERAL PROPERTIES OF SOFT MAGNETS Magnetization curve and hysteresisThe behavior of a ferromagnetic material is summarized by the constitutive law J(H) (i.e., M(H)), the dependence of the polarization J (magnetization M) on the magnetic field H.In many instances one can usefully recur to the B(H) law, where the magnetic induction B, the quantity involved in the Faraday-Maxwell law, is related to M, J, and H by the relationship B = µ0H + µ0M = µ0H + J, (1) where µ0 = 4p×10 -7 NA -2 (H/m) is the magnetic constant (also called magnetic permeability of vacuum).The constitutive law (1) is the macroscopic outcome of an extremely complex sequence of microscopic processes, where, by combination of domain wall displacements, domain structure rearrangements, and rotations of the
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luo发布了新的文献求助10
1秒前
梅一一完成签到,获得积分10
1秒前
小王关注了科研通微信公众号
2秒前
王维维完成签到 ,获得积分10
2秒前
Anyemzl完成签到,获得积分10
2秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
Aggy发布了新的文献求助10
2秒前
2秒前
椰青发布了新的文献求助10
2秒前
2秒前
cyy发布了新的文献求助10
2秒前
3秒前
lili完成签到,获得积分10
3秒前
3秒前
老刘不吃香菜完成签到,获得积分10
3秒前
3秒前
lb001完成签到,获得积分10
3秒前
sbc发布了新的文献求助10
4秒前
活ni的pig完成签到 ,获得积分10
4秒前
万能图书馆应助田田田田采纳,获得10
5秒前
甜甜凉面完成签到,获得积分10
5秒前
科研的鱼发布了新的文献求助10
5秒前
5秒前
6秒前
WW发布了新的文献求助10
6秒前
大志完成签到 ,获得积分20
7秒前
7秒前
Mabel应助马力采纳,获得10
8秒前
研友_VZG7GZ应助Aggy采纳,获得10
8秒前
gincle发布了新的文献求助30
8秒前
Lmting发布了新的文献求助10
8秒前
8秒前
无花果应助梅一一采纳,获得10
9秒前
Lucas应助SparrowGrowing采纳,获得10
9秒前
蝶痕发布了新的文献求助10
10秒前
所所应助松本润不足采纳,获得10
10秒前
无知小白发布了新的文献求助10
11秒前
11秒前
旧梦如烟关注了科研通微信公众号
12秒前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Migration and Wellbeing: Towards a More Inclusive World 1200
Research Methods for Sports Studies 1000
The genus Tolmerinus Bernhauer in Borneo (Coleoptera: Staphylinidae, Staphylininae) 530
Evolution 501
On the Refined Urban Stormwater Modeling 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2965736
求助须知:如何正确求助?哪些是违规求助? 2628876
关于积分的说明 7080919
捐赠科研通 2262719
什么是DOI,文献DOI怎么找? 1199963
版权声明 591345
科研通“疑难数据库(出版商)”最低求助积分说明 586885