Wiley Encyclopedia of Electrical and Electronics Engineering

百科全书 数码产品 工程类 电气工程 计算机科学 图书馆学
作者
F. Fiorillo,G. Bertotti,C. Appino,M. Pasquale
出处
期刊:Wiley eBooks [Wiley]
被引量:517
标识
DOI:10.1002/047134608x
摘要

A magnetic material is considered "soft" when its coercive fieldstrength is of the order of or lower than the earth's magnetic field (about 40 A/m).A soft magnetic material can be employed as an efficient flux multiplier in a large variety of devices, including transformers, generators, motors, to be used in the generation, distribution, and conversion of electrical energy, and a wide array of apparatus, from household appliances to scientific equipment.With a market around 20 billion in the year 2015 and annual growth rate around 5 %, soft magnetic materials (SMMs) are today an ever-important industrial product, offering challenging issues in properties understanding, preparation and characterization.An overview of the whole market of magnetic materials and the relative contributions of the different types of soft magnets is given in Fig. 1.SMMs were at the core of the development of the early industrial applications of electricity.The steel practice at the turn of the 19 th century was sufficiently developed to satisfy the increasing need of mild steel for the electrical machine cores.In 1900 Hadfield, Barrett, and Brown proved that, by adding around 2% in weight Si to the conventional magnetic steels, one could increase the permeability and decrease the energy losses [1].Fe-Si alloys were more expensive and more difficult to produce and gained slow acceptance.In addition, the poor control of the C content was to mask the prospective performances of this product, compared with mild steels.It took more than two decades, characterized by a gradual improvement of the metallurgical processes, for Fe-Si to become the material of choice for transformers.An empirical attitude towards research in magnetic materials was prevalent at the time and applications came well before theoretical understanding.This is the case of the Goss process, developed in the early 1930s, by which the first grain-oriented Fe-Si laminations could be industrially produced [2].In the years 1915-1923 G.W Elmen and co-workers at the Bell Telephone Laboratories systematically investigated alloys made of Fe and Ni, discovering the excellent soft magnetic properties of the permalloys (78% Ni) [3].J.L. Snoek and co-workers are credited for the successful industrial development of ferrites in the 1940's [4], following attempts dating back to the first decade of the century.The discovery in 1967 of the soft magnetic amorphous alloys again occurred nearly by chance [5], but it provided a fertile field for technologists and theorists.It enriched the landscape of applicative magnetic materials, while straining existing theories on magnetic ordering.More recently, the need for increasingly high frequencies of operation in miniaturized devices and the appearance of novel phenomena of fundamental and applicative interest in lowdimensionality systems have propelled the investigation of the properties and the preparation techniques of soft magnetic thin films [6] [7].Of special interest in this respect are the magnetoresistive phenomena observed in multilayer structures, where different layers can display, by combination of exchange interaction and applied field, either parallel or antiparallel magnetization.Spin-polarized conduction electrons diffusing through the layers suffer a magnetization orientation dependent scattering, according to their spin-up or spin-down character, resulting in a giant magnetoresistance effect [8]. GENERAL PROPERTIES OF SOFT MAGNETS Magnetization curve and hysteresisThe behavior of a ferromagnetic material is summarized by the constitutive law J(H) (i.e., M(H)), the dependence of the polarization J (magnetization M) on the magnetic field H.In many instances one can usefully recur to the B(H) law, where the magnetic induction B, the quantity involved in the Faraday-Maxwell law, is related to M, J, and H by the relationship B = µ0H + µ0M = µ0H + J, (1) where µ0 = 4p×10 -7 NA -2 (H/m) is the magnetic constant (also called magnetic permeability of vacuum).The constitutive law (1) is the macroscopic outcome of an extremely complex sequence of microscopic processes, where, by combination of domain wall displacements, domain structure rearrangements, and rotations of the

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘西西发布了新的文献求助10
2秒前
火力全开完成签到,获得积分10
2秒前
幽默傲儿完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
芋泥芝士完成签到,获得积分10
5秒前
852应助哔哩哔哩哔哔哔采纳,获得30
5秒前
淡定的勒应助Mary采纳,获得10
6秒前
6秒前
顺顺利利完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
科目三应助科研通管家采纳,获得10
10秒前
liuce0307发布了新的文献求助10
10秒前
大蛋老师应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Young应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
大蛋老师应助科研通管家采纳,获得10
11秒前
谭阿面完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
背后思卉应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
大蛋老师应助科研通管家采纳,获得10
11秒前
11秒前
能干的孤丝完成签到,获得积分10
12秒前
cwy完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430