法拉第效率
化学
密度泛函理论
选择性
电催化剂
化学工程
纳米颗粒
电化学
催化作用
面(心理学)
纳米技术
无机化学
氧化还原
过电位
电极
材料科学
物理化学
计算化学
有机化学
五大性格特征
工程类
社会心理学
人格
心理学
作者
Subiao Liu,Hongbiao Tao,Li Zeng,Qi Liu,Zhenghe Xu,Qingxia Liu,Jing‐Li Luo
摘要
Electrochemical reduction of CO2 (CO2RR) provides great potential for intermittent renewable energy storage. This study demonstrates a predominant shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates (Tri-Ag-NPs) in 0.1 M KHCO3. Compared with similarly sized Ag nanoparticles (SS-Ag-NPs) and bulk Ag, Tri-Ag-NPs exhibited an enhanced current density and significantly improved Faradaic efficiency (96.8%) and energy efficiency (61.7%), together with a considerable durability (7 days). Additionally, CO starts to be observed at an ultralow overpotential of 96 mV, further confirming the superiority of Tri-Ag-NPs as a catalyst for CO2RR toward CO formation. Density functional theory calculations reveal that the significantly enhanced electrocatalytic activity and selectivity at lowered overpotential originate from the shape-controlled structure. This not only provides the optimum edge-to-corner ratio but also dominates at the facet of Ag(100) where it requires lower energy to initiate the rate-determining step. This study demonstrates a promising approach to tune electrocatalytic activity and selectivity of metal catalysts for CO2RR by creating optimal facet and edge site through shape-control synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI