已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets

精神病理学 心理学 梅德林 临床心理学 生物 生物化学
作者
Jonas M B Haslbeck,Eiko I. Fried
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:47 (16): 2767-2776 被引量:392
标识
DOI:10.1017/s0033291717001258
摘要

Background Network analyses on psychopathological data focus on the network structure and its derivatives such as node centrality. One conclusion one can draw from centrality measures is that the node with the highest centrality is likely to be the node that is determined most by its neighboring nodes. However, centrality is a relative measure: knowing that a node is highly central gives no information about the extent to which it is determined by its neighbors. Here we provide an absolute measure of determination (or controllability) of a node – its predictability. We introduce predictability, estimate the predictability of all nodes in 18 prior empirical network papers on psychopathology, and statistically relate it to centrality. Methods We carried out a literature review and collected 25 datasets from 18 published papers in the field (several mood and anxiety disorders, substance abuse, psychosis, autism, and transdiagnostic data). We fit state-of-the-art network models to all datasets, and computed the predictability of all nodes. Results Predictability was unrelated to sample size, moderately high in most symptom networks, and differed considerable both within and between datasets. Predictability was higher in community than clinical samples, highest for mood and anxiety disorders, and lowest for psychosis. Conclusions Predictability is an important additional characterization of symptom networks because it gives an absolute measure of the controllability of each node. It allows conclusions about how self-determined a symptom network is, and may help to inform intervention strategies. Limitations of predictability along with future directions are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助DD采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
Charlie完成签到 ,获得积分10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
Ty发布了新的文献求助10
1秒前
3秒前
5秒前
6秒前
1111完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
cyj发布了新的文献求助30
8秒前
9秒前
star发布了新的文献求助10
10秒前
allshestar完成签到 ,获得积分0
11秒前
李爱国应助烤冷面采纳,获得10
11秒前
12秒前
大个应助南风不竞采纳,获得10
13秒前
haha完成签到 ,获得积分10
13秒前
15秒前
上官若男应助超级的代柔采纳,获得10
15秒前
谨慎鸽子发布了新的文献求助10
17秒前
桃子e发布了新的文献求助10
17秒前
18秒前
lyncee完成签到,获得积分10
18秒前
茉莉完成签到 ,获得积分10
18秒前
香菜芋头完成签到,获得积分10
19秒前
虾米君发布了新的文献求助10
20秒前
20秒前
何宁完成签到,获得积分10
20秒前
辛勤的龙猫应助王丹靖采纳,获得50
21秒前
微笑以南完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763257
求助须知:如何正确求助?哪些是违规求助? 5539799
关于积分的说明 15404550
捐赠科研通 4899105
什么是DOI,文献DOI怎么找? 2635329
邀请新用户注册赠送积分活动 1583419
关于科研通互助平台的介绍 1538503