清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets

精神病理学 心理学 梅德林 临床心理学 生物 生物化学
作者
Jonas M B Haslbeck,Eiko I. Fried
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:47 (16): 2767-2776 被引量:311
标识
DOI:10.1017/s0033291717001258
摘要

Background Network analyses on psychopathological data focus on the network structure and its derivatives such as node centrality. One conclusion one can draw from centrality measures is that the node with the highest centrality is likely to be the node that is determined most by its neighboring nodes. However, centrality is a relative measure: knowing that a node is highly central gives no information about the extent to which it is determined by its neighbors. Here we provide an absolute measure of determination (or controllability) of a node – its predictability. We introduce predictability, estimate the predictability of all nodes in 18 prior empirical network papers on psychopathology, and statistically relate it to centrality. Methods We carried out a literature review and collected 25 datasets from 18 published papers in the field (several mood and anxiety disorders, substance abuse, psychosis, autism, and transdiagnostic data). We fit state-of-the-art network models to all datasets, and computed the predictability of all nodes. Results Predictability was unrelated to sample size, moderately high in most symptom networks, and differed considerable both within and between datasets. Predictability was higher in community than clinical samples, highest for mood and anxiety disorders, and lowest for psychosis. Conclusions Predictability is an important additional characterization of symptom networks because it gives an absolute measure of the controllability of each node. It allows conclusions about how self-determined a symptom network is, and may help to inform intervention strategies. Limitations of predictability along with future directions are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达克赛德完成签到 ,获得积分10
7秒前
小刘同学完成签到,获得积分20
11秒前
16秒前
31秒前
复杂的可乐完成签到 ,获得积分10
32秒前
Lillianzhu1完成签到,获得积分10
34秒前
39秒前
xingsixs完成签到 ,获得积分10
58秒前
机智的孤兰完成签到 ,获得积分10
59秒前
1分钟前
cgs完成签到 ,获得积分10
1分钟前
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
zijingsy完成签到 ,获得积分0
1分钟前
树妖三三完成签到,获得积分10
1分钟前
1分钟前
1分钟前
舒适的一凤完成签到 ,获得积分10
1分钟前
2分钟前
梓歆发布了新的文献求助10
2分钟前
龚瑶完成签到 ,获得积分10
2分钟前
2分钟前
xh完成签到,获得积分10
2分钟前
2分钟前
2分钟前
时老完成签到 ,获得积分10
2分钟前
2分钟前
tszjw168完成签到 ,获得积分0
2分钟前
3分钟前
赘婿应助梓歆采纳,获得10
3分钟前
柠檬普洱茶完成签到,获得积分10
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
梓歆发布了新的文献求助10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
3分钟前
hyl-tcm完成签到 ,获得积分10
3分钟前
arsenal完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482586
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389200
捐赠科研通 4512482
什么是DOI,文献DOI怎么找? 2472995
邀请新用户注册赠送积分活动 1459182
关于科研通互助平台的介绍 1432685