Broyden–Fletcher–Goldfarb–Shanno算法
行搜索
共轭梯度法
非线性共轭梯度法
数学
共轭残差法
拟牛顿法
共轭梯度法的推导
梯度下降
下降方向
趋同(经济学)
梯度法
应用数学
常量(计算机编程)
数学优化
非线性系统
牛顿法
计算机科学
异步通信
程序设计语言
计算机网络
半径
经济
计算机安全
物理
机器学习
经济增长
人工神经网络
量子力学
标识
DOI:10.1080/10556788.2017.1325885
摘要
In this paper, we propose a new nonlinear conjugate gradient method, which generates search direction close to that of the memoryless BFGS quasi-Newton method. With exact line search, our method will reduce to the standard Hestense-Stiefel nonlinear conjugate gradient method. Moreover, for any line search and constant , the direction of our method satisfies the descent condition . We establish the global convergence for strongly convex objective function with Wolfe line search, and modify this new scheme slightly to guarantee the global convergence for general nonconvex problem. Numerical results show that the proposed method is efficient for the unconstrained problems in the CUTEr library.
科研通智能强力驱动
Strongly Powered by AbleSci AI