边缘检测
人工智能
计算机视觉
小波
GSM演进的增强数据速率
比例(比率)
计算机科学
小波变换
帧(网络)
模式识别(心理学)
图像处理
图像(数学)
物理
量子力学
电信
作者
Yan Zhang,Dimitri Lefebvre,Qingling Li
出处
期刊:IEEE Transactions on Automation Science and Engineering
[Institute of Electrical and Electronics Engineers]
日期:2017-07-01
卷期号:14 (3): 1378-1386
被引量:46
标识
DOI:10.1109/tase.2015.2469594
摘要
This paper is about the detection of tire defects in multi-textural radiographic images. We consider the tire defects characterization problem in ways of local regularity analysis and scale characteristic. Optimal scale and threshold parameters are selected using a defect edge measurement model to frame defect edge detection. This framework distinguishes the defects from the background textures. Finally, a novel method for detection of tire defects is proposed based on wavelet multiscale analysis. We provide examples with a consistent dataset of 400 images selected over 3700 industrial images in order to illustrate and validate the obtained results which demonstrate substantial improvement over the state of the art.
科研通智能强力驱动
Strongly Powered by AbleSci AI