Identification of parameters of vehicles moving on bridges

鉴定(生物学) 工程类 结构工程 计算机科学 植物 生物
作者
Lu Deng,C.S. Cai
出处
期刊:Engineering Structures [Elsevier]
卷期号:31 (10): 2474-2485 被引量:80
标识
DOI:10.1016/j.engstruct.2009.06.005
摘要

This paper presents a method for identifying the parameters of vehicles moving on bridges. Two vehicle models, a single-degree-of-freedom model and a full-scale vehicle model, are used. The vehicle–bridge coupling equations are established by combining the equations of motion of both the bridge and the vehicle using the displacement relationship and the interaction force relationship at the contact point. Bridge responses including displacement, acceleration, and strain are used in the identification process. The parameters of vehicles moving on the bridge are then identified by optimizing an objective function, which is built up using the residual between the measured response time history and predicted response time history using the Genetic Algorithm. A series of case studies have been carried out and the identified results demonstrate that the proposed method is able to identify vehicle parameters very accurately. Field tests have also been performed on an existing bridge in Louisiana, and the parameters of a real truck are predicted. Since it is able to identify the parameters of moving vehicles, the methodology can be applied to improve the current weigh-in-motion techniques that usually require a smooth road surface and slow vehicle movement to minimize the dynamic effects. The methodology can also be implemented in routine traffic monitoring and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
刚刚
222完成签到,获得积分10
刚刚
iNk应助1937采纳,获得10
刚刚
1秒前
笨笨乘风完成签到,获得积分10
2秒前
苹果从菡发布了新的文献求助10
2秒前
王友发布了新的文献求助10
2秒前
2秒前
鱼饼完成签到 ,获得积分10
3秒前
li完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Kevin_KYT_577完成签到,获得积分10
4秒前
yqf完成签到,获得积分10
6秒前
魔幻蓉发布了新的文献求助10
6秒前
林123完成签到,获得积分10
6秒前
6秒前
爆米花应助ppg123采纳,获得10
6秒前
Orange应助乐观采纳,获得10
6秒前
到底是谁还在做牛马完成签到 ,获得积分10
7秒前
7秒前
PPP发布了新的文献求助20
7秒前
木木木发布了新的文献求助10
7秒前
7秒前
余生完成签到,获得积分10
7秒前
Owen应助刘燕采纳,获得10
8秒前
一只大圆脸完成签到 ,获得积分10
8秒前
读研好难发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
对科研祛魅的small完成签到,获得积分10
9秒前
桃桃完成签到,获得积分10
9秒前
9秒前
丘比特应助激昂的沛柔采纳,获得10
10秒前
Yaon-Xu完成签到,获得积分10
10秒前
无花果应助小武采纳,获得10
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311586
求助须知:如何正确求助?哪些是违规求助? 2944410
关于积分的说明 8518837
捐赠科研通 2619769
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664704
邀请新用户注册赠送积分活动 649969