YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses

规范化(社会学) 标识符 分位数 数据挖掘 计算机科学 数据库规范化 生物 统计 数学 人工智能 模式识别(心理学) 人类学 社会学 程序设计语言
作者
Kim‐Anh Lê Cao,Florian Rohart,Leo McHugh,Othmar Korn,Christine A. Wells
出处
期刊:Genomics [Elsevier BV]
卷期号:103 (4): 239-251 被引量:74
标识
DOI:10.1016/j.ygeno.2014.03.001
摘要

Gene expression databases contain invaluable information about a range of cell states, but the question "Where is my gene of interest expressed?" remains one of the most difficult to systematically assess when relevant data is derived on different platforms. Barriers to integrating this data include disparities in data formats and scale, a lack of common identifiers, and the disproportionate contribution of a platform to the 'batch effect'. There are few purpose-built cross-platform normalization strategies, and most of these fit data to an idealized data structure, which in turn may compromise gene expression comparisons between different platforms. YuGene addresses this gap by providing a simple transform that assigns a modified cumulative proportion value to each measurement, without losing essential underlying information on data distributions or experimental correlates. The Yugene transform is applied to individual samples and is suitable to apply to data with different distributions. Yugene is robust to combining datasets of different sizes, does not require global renormalization as new data is added, and does not require a common identifier. YuGene was benchmarked against commonly used normalization approaches, performing favorably in comparison to quantile (RMA), Z-score or rank methods. Implementation in the www.stemformatics.org resource provides users with expression queries across stem cell related datasets. Probe performance statistics including poorly performing (never expressed) probes, and examples of probes/genes expressed in a sample-restricted manner are provided. The YuGene software is implemented as an R package available from CRAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jay完成签到 ,获得积分10
1秒前
yzz发布了新的文献求助20
1秒前
Jeffery426完成签到,获得积分10
1秒前
大模型应助twob采纳,获得10
2秒前
共享精神应助知识探索家采纳,获得10
3秒前
8秒前
fffzy完成签到,获得积分10
9秒前
10秒前
11关注了科研通微信公众号
10秒前
yzz完成签到,获得积分20
10秒前
savica完成签到,获得积分10
12秒前
葛稀完成签到,获得积分10
13秒前
基金中中中完成签到,获得积分10
13秒前
mc应助王旺碎冰冰采纳,获得10
13秒前
13秒前
15秒前
下雨的颜色完成签到,获得积分10
15秒前
16秒前
我爱吃水果完成签到,获得积分10
16秒前
晶生完成签到,获得积分10
17秒前
桐桐应助早点睡采纳,获得10
18秒前
Hello应助cai采纳,获得10
18秒前
water应助晚霞常有遗憾采纳,获得10
18秒前
张春月完成签到,获得积分10
19秒前
Ccccn完成签到 ,获得积分10
19秒前
domkps完成签到 ,获得积分10
19秒前
小俞发布了新的文献求助10
20秒前
zyx完成签到,获得积分10
21秒前
aaa关闭了aaa文献求助
21秒前
wanci应助我爱吃水果采纳,获得10
21秒前
21秒前
鳗鱼紫萱完成签到,获得积分10
22秒前
秋秋完成签到 ,获得积分10
22秒前
123完成签到,获得积分10
22秒前
qiqi完成签到,获得积分10
23秒前
王昭完成签到,获得积分10
25秒前
26秒前
郝宇完成签到,获得积分10
27秒前
开心苠发布了新的文献求助20
27秒前
所所应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278