YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses

规范化(社会学) 标识符 分位数 数据挖掘 计算机科学 数据库规范化 生物 统计 数学 人工智能 模式识别(心理学) 人类学 社会学 程序设计语言
作者
Kim‐Anh Lê Cao,Florian Rohart,Leo McHugh,Othmar Korn,Christine A. Wells
出处
期刊:Genomics [Elsevier]
卷期号:103 (4): 239-251 被引量:74
标识
DOI:10.1016/j.ygeno.2014.03.001
摘要

Gene expression databases contain invaluable information about a range of cell states, but the question "Where is my gene of interest expressed?" remains one of the most difficult to systematically assess when relevant data is derived on different platforms. Barriers to integrating this data include disparities in data formats and scale, a lack of common identifiers, and the disproportionate contribution of a platform to the 'batch effect'. There are few purpose-built cross-platform normalization strategies, and most of these fit data to an idealized data structure, which in turn may compromise gene expression comparisons between different platforms. YuGene addresses this gap by providing a simple transform that assigns a modified cumulative proportion value to each measurement, without losing essential underlying information on data distributions or experimental correlates. The Yugene transform is applied to individual samples and is suitable to apply to data with different distributions. Yugene is robust to combining datasets of different sizes, does not require global renormalization as new data is added, and does not require a common identifier. YuGene was benchmarked against commonly used normalization approaches, performing favorably in comparison to quantile (RMA), Z-score or rank methods. Implementation in the www.stemformatics.org resource provides users with expression queries across stem cell related datasets. Probe performance statistics including poorly performing (never expressed) probes, and examples of probes/genes expressed in a sample-restricted manner are provided. The YuGene software is implemented as an R package available from CRAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
3秒前
墨茗棋秒发布了新的文献求助10
4秒前
5秒前
天天快乐应助清脆的书桃采纳,获得10
6秒前
6秒前
qqq完成签到,获得积分20
7秒前
8秒前
天南星发布了新的文献求助10
8秒前
冷静的胜完成签到 ,获得积分10
9秒前
gaojie发布了新的文献求助10
9秒前
丘比特应助Arjun采纳,获得10
9秒前
10秒前
斯文败类应助alexlpb采纳,获得10
11秒前
共享精神应助笑笑采纳,获得10
11秒前
11秒前
潇笑发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助Jennifer采纳,获得10
12秒前
13秒前
14秒前
虚心的代男完成签到,获得积分10
15秒前
索隆发布了新的文献求助10
15秒前
缓慢的香芦完成签到,获得积分10
15秒前
CodeCraft应助科科采纳,获得10
15秒前
张歪歪完成签到,获得积分10
16秒前
16秒前
安安完成签到,获得积分10
17秒前
大橙子发布了新的文献求助10
17秒前
jingyu发布了新的文献求助10
17秒前
18秒前
充电宝应助学术蝗虫采纳,获得10
18秒前
KDC发布了新的文献求助10
19秒前
小蘑菇应助潇笑采纳,获得10
20秒前
20秒前
20秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170410
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935169
捐赠科研通 2481933
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608