YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses

规范化(社会学) 标识符 分位数 数据挖掘 计算机科学 数据库规范化 生物 统计 数学 人工智能 模式识别(心理学) 人类学 社会学 程序设计语言
作者
Kim‐Anh Lê Cao,Florian Rohart,Leo McHugh,Othmar Korn,Christine A. Wells
出处
期刊:Genomics [Elsevier]
卷期号:103 (4): 239-251 被引量:74
标识
DOI:10.1016/j.ygeno.2014.03.001
摘要

Gene expression databases contain invaluable information about a range of cell states, but the question "Where is my gene of interest expressed?" remains one of the most difficult to systematically assess when relevant data is derived on different platforms. Barriers to integrating this data include disparities in data formats and scale, a lack of common identifiers, and the disproportionate contribution of a platform to the 'batch effect'. There are few purpose-built cross-platform normalization strategies, and most of these fit data to an idealized data structure, which in turn may compromise gene expression comparisons between different platforms. YuGene addresses this gap by providing a simple transform that assigns a modified cumulative proportion value to each measurement, without losing essential underlying information on data distributions or experimental correlates. The Yugene transform is applied to individual samples and is suitable to apply to data with different distributions. Yugene is robust to combining datasets of different sizes, does not require global renormalization as new data is added, and does not require a common identifier. YuGene was benchmarked against commonly used normalization approaches, performing favorably in comparison to quantile (RMA), Z-score or rank methods. Implementation in the www.stemformatics.org resource provides users with expression queries across stem cell related datasets. Probe performance statistics including poorly performing (never expressed) probes, and examples of probes/genes expressed in a sample-restricted manner are provided. The YuGene software is implemented as an R package available from CRAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助潇洒忘幽采纳,获得10
1秒前
传奇3应助枝桠采纳,获得10
2秒前
烦烦烦方法完成签到,获得积分10
4秒前
5秒前
whr0458完成签到,获得积分10
7秒前
卓若之完成签到 ,获得积分10
7秒前
7秒前
完美行云完成签到,获得积分10
8秒前
殊桐完成签到,获得积分10
9秒前
9秒前
9秒前
小笑完成签到,获得积分10
9秒前
Hello应助能干可兰采纳,获得10
9秒前
俭朴山兰发布了新的文献求助10
12秒前
李子木发布了新的文献求助10
12秒前
12秒前
12秒前
Akim应助Xu_W卜采纳,获得10
13秒前
Tong发布了新的文献求助10
14秒前
嘀嘀哒哒发布了新的文献求助10
14秒前
啊啊啊完成签到 ,获得积分10
15秒前
16秒前
无花果应助小千采纳,获得10
16秒前
mingjie发布了新的文献求助10
17秒前
18秒前
算了发布了新的文献求助30
20秒前
能干可兰发布了新的文献求助10
21秒前
D1504009654完成签到,获得积分10
23秒前
香蕉觅云应助holic采纳,获得10
23秒前
年轻的宛发布了新的文献求助10
23秒前
小马甲应助嘀嘀哒哒采纳,获得10
24秒前
MGL2000发布了新的文献求助10
24秒前
天天快乐应助悦悦采纳,获得10
26秒前
26秒前
27秒前
overThat发布了新的文献求助10
29秒前
赘婿应助12344采纳,获得10
30秒前
31秒前
粥粥完成签到 ,获得积分10
32秒前
32秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084389
求助须知:如何正确求助?哪些是违规求助? 2737327
关于积分的说明 7544689
捐赠科研通 2386947
什么是DOI,文献DOI怎么找? 1265702
科研通“疑难数据库(出版商)”最低求助积分说明 613158
版权声明 598320