规范化(社会学)
标识符
分位数
数据挖掘
计算机科学
数据库规范化
生物
统计
数学
人工智能
模式识别(心理学)
人类学
社会学
程序设计语言
作者
Kim‐Anh Lê Cao,Florian Rohart,Leo McHugh,Othmar Korn,Christine A. Wells
出处
期刊:Genomics
[Elsevier]
日期:2014-03-23
卷期号:103 (4): 239-251
被引量:74
标识
DOI:10.1016/j.ygeno.2014.03.001
摘要
Gene expression databases contain invaluable information about a range of cell states, but the question "Where is my gene of interest expressed?" remains one of the most difficult to systematically assess when relevant data is derived on different platforms. Barriers to integrating this data include disparities in data formats and scale, a lack of common identifiers, and the disproportionate contribution of a platform to the 'batch effect'. There are few purpose-built cross-platform normalization strategies, and most of these fit data to an idealized data structure, which in turn may compromise gene expression comparisons between different platforms. YuGene addresses this gap by providing a simple transform that assigns a modified cumulative proportion value to each measurement, without losing essential underlying information on data distributions or experimental correlates. The Yugene transform is applied to individual samples and is suitable to apply to data with different distributions. Yugene is robust to combining datasets of different sizes, does not require global renormalization as new data is added, and does not require a common identifier. YuGene was benchmarked against commonly used normalization approaches, performing favorably in comparison to quantile (RMA), Z-score or rank methods. Implementation in the www.stemformatics.org resource provides users with expression queries across stem cell related datasets. Probe performance statistics including poorly performing (never expressed) probes, and examples of probes/genes expressed in a sample-restricted manner are provided. The YuGene software is implemented as an R package available from CRAN.
科研通智能强力驱动
Strongly Powered by AbleSci AI