YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses

规范化(社会学) 标识符 分位数 数据挖掘 计算机科学 数据库规范化 生物 统计 数学 人工智能 模式识别(心理学) 社会学 人类学 程序设计语言
作者
Kim‐Anh Lê Cao,Florian Rohart,Leo McHugh,Othmar Korn,Christine A. Wells
出处
期刊:Genomics [Elsevier BV]
卷期号:103 (4): 239-251 被引量:74
标识
DOI:10.1016/j.ygeno.2014.03.001
摘要

Gene expression databases contain invaluable information about a range of cell states, but the question "Where is my gene of interest expressed?" remains one of the most difficult to systematically assess when relevant data is derived on different platforms. Barriers to integrating this data include disparities in data formats and scale, a lack of common identifiers, and the disproportionate contribution of a platform to the 'batch effect'. There are few purpose-built cross-platform normalization strategies, and most of these fit data to an idealized data structure, which in turn may compromise gene expression comparisons between different platforms. YuGene addresses this gap by providing a simple transform that assigns a modified cumulative proportion value to each measurement, without losing essential underlying information on data distributions or experimental correlates. The Yugene transform is applied to individual samples and is suitable to apply to data with different distributions. Yugene is robust to combining datasets of different sizes, does not require global renormalization as new data is added, and does not require a common identifier. YuGene was benchmarked against commonly used normalization approaches, performing favorably in comparison to quantile (RMA), Z-score or rank methods. Implementation in the www.stemformatics.org resource provides users with expression queries across stem cell related datasets. Probe performance statistics including poorly performing (never expressed) probes, and examples of probes/genes expressed in a sample-restricted manner are provided. The YuGene software is implemented as an R package available from CRAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愿你安好不离笑完成签到,获得积分10
刚刚
蔺景轩完成签到 ,获得积分10
刚刚
张益达完成签到,获得积分10
1秒前
Cheny完成签到 ,获得积分10
1秒前
1秒前
2秒前
华仔应助淡定访枫采纳,获得10
2秒前
康丽发布了新的文献求助10
3秒前
Aster发布了新的文献求助10
3秒前
Yuanchaoyi完成签到,获得积分20
3秒前
Viki完成签到,获得积分10
3秒前
毛毛完成签到,获得积分20
4秒前
踏实语海完成签到,获得积分10
4秒前
戊烷完成签到,获得积分10
4秒前
阔达的海完成签到,获得积分10
4秒前
5秒前
番茄炒西红柿完成签到,获得积分10
5秒前
冷静灵竹完成签到,获得积分10
5秒前
余喆完成签到,获得积分10
6秒前
Yuanchaoyi发布了新的文献求助10
6秒前
李天乐发布了新的文献求助10
6秒前
金元宝完成签到,获得积分10
6秒前
充电宝应助伶俐问薇采纳,获得10
6秒前
希望天下0贩的0应助大白采纳,获得10
7秒前
情怀应助怕黑的凝旋采纳,获得10
7秒前
mrlow完成签到,获得积分10
7秒前
gelinhao完成签到,获得积分10
8秒前
GEN完成签到,获得积分20
9秒前
9秒前
iiing完成签到,获得积分10
9秒前
9秒前
重要的板凳完成签到,获得积分10
9秒前
Venus完成签到,获得积分10
9秒前
田様应助吹风机采纳,获得10
9秒前
自然的霸完成签到,获得积分10
10秒前
深情安青应助珊珊采纳,获得10
10秒前
壮观的夏蓉完成签到,获得积分0
10秒前
机灵似狮发布了新的文献求助10
10秒前
云深不知处完成签到,获得积分10
11秒前
康丽完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167