Automatic differential diagnosis of pancreatic serous and mucinous cystadenomas based on morphological features

浆液性囊腺瘤 黏液性囊腺瘤 数字化病理学 计算机科学 鉴别诊断 人工智能 浆液性液体 囊腺瘤 病理 放大倍数 模式识别(心理学) 放射科 胰腺 医学 内分泌学
作者
Jae-Won Song,Ju-Hong Lee,Joon Hyuk Choi,Seok-Ju Chun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:43 (1): 1-15 被引量:14
标识
DOI:10.1016/j.compbiomed.2012.10.009
摘要

Generally, pathological diagnosis using an electron microscope is time-consuming and likely to result in a subjective judgment, because pathologists perform manual screening of tissue slides at high magnifications. Recently, the advent of digital pathology technology has provided the basis for convenient screening and quantitative analysis by digitizing tissue slides through a computer system. However, a screening process with high magnification still takes quite a long time. To solve these problems, recently the use of computer-aided design techniques for performing pathologic diagnosis has been increasing in digital pathology. For pathological diagnosis, we need different diagnostic methods for different regions with different characteristics. Therefore, in order to effectively diagnose different lesions and types of diseases, a quantitative method for extracting specific features is required in computerized pathologic diagnosis. This study is about an automated differential diagnosis system to differentiate between benign serous cystadenoma and possibly-malignant mucinous cystadenoma. In order to diagnose cystic tumors, the first step is identifying a cystic region and inspecting its epithelial cells. First, we identify the lumen boundary of a cyst using the Direction Cumulative Map considering 8-ways. Then, the Epithelial Nuclei Identification algorithm is used to discern epithelial nuclei. After that, three morphological features for the differential diagnosis of mucinous and serous cystadenomas are extracted. To demonstrate the superiority of the proposed features, the experiments compared performance of the classifiers learned by using the proposed morphological features and the classical morphological features based on nuclei. The classifiers in the simulations are as follows; Bayesian Classifier, k-Nearest Neighbors, Support Vector Machine, and Artificial Neural Network. The results show that all classifiers using the proposed features have the best classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助趴菜同学采纳,获得10
1秒前
3秒前
3秒前
英俊的铭应助xiuwenli采纳,获得10
5秒前
最强魔神完成签到,获得积分0
6秒前
yunyun发布了新的文献求助10
7秒前
8秒前
8秒前
善学以致用应助汎影采纳,获得10
9秒前
JDQW完成签到,获得积分10
10秒前
SciGPT应助微微采纳,获得10
15秒前
酷波er应助赵卫星采纳,获得10
16秒前
16秒前
joye完成签到,获得积分10
21秒前
xianglily完成签到 ,获得积分10
21秒前
22秒前
Xiao完成签到,获得积分10
22秒前
茶叶蛋发布了新的文献求助50
23秒前
李爱国应助xiuwenli采纳,获得10
23秒前
23秒前
mm完成签到 ,获得积分10
25秒前
28秒前
xiuwenli发布了新的文献求助10
29秒前
36秒前
合适祥完成签到,获得积分10
39秒前
hinatazaka46应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
大个应助科研通管家采纳,获得10
39秒前
Hello应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
VanAllen应助科研通管家采纳,获得10
39秒前
852应助无私的电源采纳,获得10
40秒前
40秒前
科研通AI2S应助wpeng采纳,获得10
40秒前
42秒前
Azer发布了新的文献求助10
43秒前
45秒前
clj完成签到,获得积分10
48秒前
49秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Natural Fractures in Coal 300
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387455
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789896
捐赠科研通 2686064
什么是DOI,文献DOI怎么找? 1471442
科研通“疑难数据库(出版商)”最低求助积分说明 680272
邀请新用户注册赠送积分活动 673062