亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images

医学 接收机工作特性 胰腺癌 人工智能 鉴别诊断 模式识别(心理学) 放射科 特征选择 支持向量机 癌症 降维 随机森林 金标准(测试) 病理 计算机科学 内科学
作者
Minmin Zhang,Hua Yang,Zhendong Jin,Jianguo Yu,Cai ZheYuan,Zhaoshen Li
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:72 (5): 978-985 被引量:91
标识
DOI:10.1016/j.gie.2010.06.042
摘要

Background EUS can detect morphologic abnormalities of pancreatic cancer with high sensitivity but with limited specificity. Objective To develop a classification model for differential diagnosis of pancreatic cancer by using a digital imaging processing (DIP) technique to analyze EUS images of the pancreas. Design A retrospective, controlled, single-center design was used. Setting The study took place at the Second Military Medical University, Shanghai, China. Patients There were 153 pancreatic cancer and 63 noncancer patients in this study. Intervention All patients underwent EUS-guided FNA and pathologic analysis. Main Outcome Measurements EUS images were obtained and correlated with cytologic findings after FNA. Texture features were extracted from the region of interest, and multifractal dimension vectors were introduced in the feature selection to the frame of the M-band wavelet transform. The sequential forward selection process was used for a better combination of features. By using the area under the receiver operating characteristic curve and other texture features based on separability criteria, a predictive model was built, trained, and validated according to the support vector machine theory. Results From 67 frequently used texture features, 20 better features were selected, resulting in a classification accuracy of 99.07% after being added to 9 other features. A predictive model was then built and trained. After 50 random tests, the average accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of pancreatic cancer were 97.98 ± 1.23%, 94.32 ± 0.03%, 99.45 ± 0.01%, 98.65 ± 0.02%, and 97.77 ± 0.01%, respectively. Limitations The limitations of this study include the small sample size and that the support vector machine was not performed in real time. Conclusion The classification of EUS images for differentiating pancreatic cancer from normal tissue by DIP is quite useful. Further refinements of such a model could increase the accuracy of EUS diagnosis of tumors. EUS can detect morphologic abnormalities of pancreatic cancer with high sensitivity but with limited specificity. To develop a classification model for differential diagnosis of pancreatic cancer by using a digital imaging processing (DIP) technique to analyze EUS images of the pancreas. A retrospective, controlled, single-center design was used. The study took place at the Second Military Medical University, Shanghai, China. There were 153 pancreatic cancer and 63 noncancer patients in this study. All patients underwent EUS-guided FNA and pathologic analysis. EUS images were obtained and correlated with cytologic findings after FNA. Texture features were extracted from the region of interest, and multifractal dimension vectors were introduced in the feature selection to the frame of the M-band wavelet transform. The sequential forward selection process was used for a better combination of features. By using the area under the receiver operating characteristic curve and other texture features based on separability criteria, a predictive model was built, trained, and validated according to the support vector machine theory. From 67 frequently used texture features, 20 better features were selected, resulting in a classification accuracy of 99.07% after being added to 9 other features. A predictive model was then built and trained. After 50 random tests, the average accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of pancreatic cancer were 97.98 ± 1.23%, 94.32 ± 0.03%, 99.45 ± 0.01%, 98.65 ± 0.02%, and 97.77 ± 0.01%, respectively. The limitations of this study include the small sample size and that the support vector machine was not performed in real time. The classification of EUS images for differentiating pancreatic cancer from normal tissue by DIP is quite useful. Further refinements of such a model could increase the accuracy of EUS diagnosis of tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrewyu完成签到,获得积分10
3秒前
唐禹嘉完成签到 ,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Kevin发布了新的文献求助10
1分钟前
lessismore发布了新的文献求助10
2分钟前
HYQ关闭了HYQ文献求助
2分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
Kevin完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
漂亮的秋天完成签到 ,获得积分10
4分钟前
yummm完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
核桃应助不安的靖柔采纳,获得10
4分钟前
核桃应助不安的靖柔采纳,获得10
4分钟前
不安的靖柔完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
whj完成签到 ,获得积分10
8分钟前
8分钟前
迟梦琪发布了新的文献求助10
8分钟前
HYQ发布了新的文献求助10
8分钟前
迟梦琪完成签到,获得积分20
8分钟前
三世完成签到 ,获得积分10
9分钟前
gszy1975完成签到,获得积分10
9分钟前
9分钟前
红影完成签到,获得积分10
9分钟前
细腻笑卉发布了新的文献求助20
10分钟前
细腻笑卉完成签到 ,获得积分10
10分钟前
量子星尘发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
feihua1完成签到 ,获得积分10
12分钟前
13分钟前
tranphucthinh发布了新的文献求助10
13分钟前
tranphucthinh完成签到,获得积分10
13分钟前
CodeCraft应助章赛采纳,获得10
14分钟前
15分钟前
SciGPT应助小冯看不懂采纳,获得10
15分钟前
科研通AI5应助羞涩的寒松采纳,获得10
15分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683