Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images

医学 接收机工作特性 胰腺癌 人工智能 鉴别诊断 模式识别(心理学) 放射科 特征选择 支持向量机 癌症 降维 随机森林 金标准(测试) 病理 计算机科学 内科学
作者
Minmin Zhang,Hua Yang,Zhendong Jin,Jianguo Yu,Cai ZheYuan,Zhaoshen Li
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:72 (5): 978-985 被引量:91
标识
DOI:10.1016/j.gie.2010.06.042
摘要

Background EUS can detect morphologic abnormalities of pancreatic cancer with high sensitivity but with limited specificity. Objective To develop a classification model for differential diagnosis of pancreatic cancer by using a digital imaging processing (DIP) technique to analyze EUS images of the pancreas. Design A retrospective, controlled, single-center design was used. Setting The study took place at the Second Military Medical University, Shanghai, China. Patients There were 153 pancreatic cancer and 63 noncancer patients in this study. Intervention All patients underwent EUS-guided FNA and pathologic analysis. Main Outcome Measurements EUS images were obtained and correlated with cytologic findings after FNA. Texture features were extracted from the region of interest, and multifractal dimension vectors were introduced in the feature selection to the frame of the M-band wavelet transform. The sequential forward selection process was used for a better combination of features. By using the area under the receiver operating characteristic curve and other texture features based on separability criteria, a predictive model was built, trained, and validated according to the support vector machine theory. Results From 67 frequently used texture features, 20 better features were selected, resulting in a classification accuracy of 99.07% after being added to 9 other features. A predictive model was then built and trained. After 50 random tests, the average accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of pancreatic cancer were 97.98 ± 1.23%, 94.32 ± 0.03%, 99.45 ± 0.01%, 98.65 ± 0.02%, and 97.77 ± 0.01%, respectively. Limitations The limitations of this study include the small sample size and that the support vector machine was not performed in real time. Conclusion The classification of EUS images for differentiating pancreatic cancer from normal tissue by DIP is quite useful. Further refinements of such a model could increase the accuracy of EUS diagnosis of tumors. EUS can detect morphologic abnormalities of pancreatic cancer with high sensitivity but with limited specificity. To develop a classification model for differential diagnosis of pancreatic cancer by using a digital imaging processing (DIP) technique to analyze EUS images of the pancreas. A retrospective, controlled, single-center design was used. The study took place at the Second Military Medical University, Shanghai, China. There were 153 pancreatic cancer and 63 noncancer patients in this study. All patients underwent EUS-guided FNA and pathologic analysis. EUS images were obtained and correlated with cytologic findings after FNA. Texture features were extracted from the region of interest, and multifractal dimension vectors were introduced in the feature selection to the frame of the M-band wavelet transform. The sequential forward selection process was used for a better combination of features. By using the area under the receiver operating characteristic curve and other texture features based on separability criteria, a predictive model was built, trained, and validated according to the support vector machine theory. From 67 frequently used texture features, 20 better features were selected, resulting in a classification accuracy of 99.07% after being added to 9 other features. A predictive model was then built and trained. After 50 random tests, the average accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of pancreatic cancer were 97.98 ± 1.23%, 94.32 ± 0.03%, 99.45 ± 0.01%, 98.65 ± 0.02%, and 97.77 ± 0.01%, respectively. The limitations of this study include the small sample size and that the support vector machine was not performed in real time. The classification of EUS images for differentiating pancreatic cancer from normal tissue by DIP is quite useful. Further refinements of such a model could increase the accuracy of EUS diagnosis of tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
英姑应助科研通管家采纳,获得10
2秒前
LJ发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
HY完成签到,获得积分10
4秒前
Loooong发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
狂野忆文发布了新的文献求助10
5秒前
abc完成签到,获得积分10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027