亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

烧结 奥斯特瓦尔德成熟 聚结(物理) 材料科学 纳米颗粒 化学工程 粒子(生态学) 催化作用 纳米技术 冶金 化学 有机化学 地质学 工程类 物理 海洋学 天体生物学
作者
Thomas W. Hansen,Andrew DeLaRiva,Sivakumar R. Challa,Abhaya K. Datye
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (8): 1720-1730 被引量:1124
标识
DOI:10.1021/ar3002427
摘要

Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface.In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures.In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助李李采纳,获得10
23秒前
28秒前
45秒前
Nana发布了新的文献求助10
50秒前
59秒前
李李发布了新的文献求助10
1分钟前
1分钟前
sdyswgm发布了新的文献求助20
1分钟前
666完成签到 ,获得积分10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
1分钟前
JoeyCory发布了新的文献求助10
1分钟前
2分钟前
溺溺发布了新的文献求助10
2分钟前
SciGPT应助温暖砖头采纳,获得10
2分钟前
JoeyCory完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
自由冰凡完成签到 ,获得积分10
2分钟前
麦当劳薯条完成签到,获得积分10
2分钟前
2分钟前
可爱邓邓完成签到 ,获得积分10
2分钟前
lby完成签到 ,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
SALTwater7关注了科研通微信公众号
2分钟前
2分钟前
莱芙完成签到 ,获得积分10
2分钟前
2分钟前
zjl123发布了新的文献求助10
2分钟前
SALTwater7发布了新的文献求助10
2分钟前
sdyswgm发布了新的文献求助10
3分钟前
科研通AI2S应助愤怒的亦旋采纳,获得10
3分钟前
搜集达人应助sdyswgm采纳,获得10
3分钟前
ShibaoWu发布了新的文献求助30
3分钟前
sdyswgm完成签到,获得积分10
3分钟前
我是老大应助Omni采纳,获得10
3分钟前
3分钟前
嘉心糖给无私的雪瑶的求助进行了留言
3分钟前
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482424
捐赠科研通 2611452
什么是DOI,文献DOI怎么找? 1425877
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005