Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

烧结 奥斯特瓦尔德成熟 聚结(物理) 材料科学 纳米颗粒 化学工程 粒子(生态学) 催化作用 纳米技术 冶金 化学 有机化学 地质学 工程类 物理 海洋学 天体生物学
作者
Thomas W. Hansen,Andrew DeLaRiva,Sivakumar R. Challa,Abhaya K. Datye
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (8): 1720-1730 被引量:1155
标识
DOI:10.1021/ar3002427
摘要

Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface.In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures.In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydragen应助Yun采纳,获得50
2秒前
YYY完成签到,获得积分10
2秒前
十一完成签到,获得积分10
3秒前
时尚雨兰完成签到,获得积分10
4秒前
高高从霜完成签到 ,获得积分10
6秒前
shendy完成签到,获得积分10
6秒前
8秒前
蒋中豪2.0完成签到 ,获得积分10
9秒前
观妙散人完成签到,获得积分10
10秒前
默默的巧蕊完成签到,获得积分10
10秒前
蔡翌文完成签到 ,获得积分10
11秒前
小马甲应助ding采纳,获得10
12秒前
kyt完成签到 ,获得积分10
13秒前
lyb完成签到 ,获得积分10
14秒前
lun发布了新的文献求助10
15秒前
carly完成签到 ,获得积分10
15秒前
123完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
雪上一枝蒿完成签到,获得积分10
16秒前
feng完成签到,获得积分10
17秒前
影流完成签到,获得积分10
18秒前
Hehehehe完成签到 ,获得积分10
19秒前
江霭完成签到,获得积分10
19秒前
MRJJJJ完成签到,获得积分10
20秒前
ztt发布了新的文献求助10
21秒前
wanci应助闾丘惜寒采纳,获得10
21秒前
神光完成签到,获得积分10
22秒前
Shoujiang完成签到 ,获得积分10
24秒前
浪麻麻完成签到 ,获得积分10
24秒前
北海完成签到,获得积分10
25秒前
优美的莹芝完成签到,获得积分10
27秒前
单薄的钢笔完成签到,获得积分10
28秒前
蒋中豪完成签到 ,获得积分10
30秒前
yydragen应助Yun采纳,获得50
30秒前
忧伤的八宝粥完成签到,获得积分0
32秒前
轻歌水越完成签到 ,获得积分10
34秒前
cn完成签到 ,获得积分10
34秒前
桐桐应助crave采纳,获得10
36秒前
gishisei完成签到,获得积分10
37秒前
ztt发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220