Hariharan Thangarajah,Ivan N. Vial,Raymon H. Grogan,Dachun Yao,Yubin Shi,Michael Januszyk,Robert D. Galiano,Edward I. Chang,Michael G. Galvez,Jason P. Glotzbach,Victor W. Wong,Michael Brownlee,Geoffrey C. Gurtner
AbstractDiabetic wounds are a significant public health burden, with slow or non-healing diabetic foot ulcers representing the leading cause of non-traumatic lower limb amputation in developed countries. These wounds heal poorly as a result of compromised blood vessel formation in response to ischemia. We have recently shown that this impairment in neovascularization results from a high glucose-induced defect in transactivation of hypoxia-inducible factor-1α (HIF-1α), the transcription factor regulating vascular endothelial growth factor (VEGF) expression. HIF-1 dysfunction is the end result of reactive oxygen species-induced modification of its coactivator p300 by the glycolytic metabolite methylglyoxal. Use of the iron chelator-antioxidant deferoxamine (DFO) reversed these effects and normalized healing of humanized diabetic wounds in mice. Here, we present additional data demonstrating that HIF-1α activity, not stability, is impaired in the high glucose environment. We demonstrate that high glucose-induced impairments in HIF-1α transactivation persist even in the setting of constitutive HIF-1α protein overexpression. Further, we show that high glucose-induced hydroxylation of the C-terminal transactivation domain of HIF-1α (the primary pathway regulating HIF-1α/p300 binding) does not alter HIF-1α activity. We extend our study of DFO's therapeutic efficacy in the treatment of impaired wound healing by demonstrating improvements in tissue viability in diabetic mice with DFO-induced increases in VEGF expression and vascular proliferation. Since DFO has been in clinical use for decades, the potential of this drug to treat a variety of ischemic conditions in humans can be evaluated relatively quickly.