GPX4
程序性细胞死亡
细胞生物学
细胞保护
细胞凋亡
细胞
生物
调节器
谷胱甘肽
自噬
癌症研究
谷胱甘肽过氧化物酶
生物化学
酶
基因
作者
José Pedro Friedmann Angeli,Manuela Schneider,Bettina Proneth,Yulia Y. Tyurina,Vladimir A. Tyurin,Victoria J. Hammond,Nadja Herbach,Michaela Aichler,Axel Walch,Elke Eggenhofer,Devaraj Basavarajappa,Olof Rádmark,Sho Kobayashi,Tobias Seibt,Heike Beck,Frauke Neff,Iréne Esposito,Rüdiger Wanke,Heidi Förster,O. P. Yefremova
摘要
Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4−/− mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4−/− mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection. Ferroptosis is a form of non-apoptotic cell death with unclear physiological relevance. Conrad and colleagues now report that unrestrained ferroptosis can lead to renal failure. They also identify a small molecule that limits ferroptosis in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI