The effect of complexity on parameter sensitivity and model uncertainty in river water quality modelling

浮游植物 灵敏度(控制系统) 水质 环境科学 富营养化 均方误差 水文学(农业) 营养物 数学 统计 生态学 生物 地质学 电子工程 工程类 岩土工程
作者
Karl‐Erich Lindenschmidt
出处
期刊:Ecological Modelling [Elsevier]
卷期号:190 (1-2): 72-86 被引量:110
标识
DOI:10.1016/j.ecolmodel.2005.04.016
摘要

Snowling and Kramer [2001. Evaluating modelling uncertainty for model selection. Ecol. Modell. 138(1), 17–30] proposed a hypothesis stating that as a model becomes more complex in terms of increased number of parameters and variable, the error between simulations and measurements decreases and the overall model sensitivity increases. In this paper, the hypothesis is tested using a river water quality model of the lower course of the Saale river, Germany. The eutrophication module of WASP5 (5th version of Water quality Analysis Simulation Program), which was developed by the U.S. EPA, was implemented. The model allows the complexity of the dissolved oxygen balance and dynamics in a water body to be easily varied from a simple Streeter–Phelps approach of dissolved oxygen–biological oxygen demand (DO–BOD) interaction to more complex phytoplankton–nutrient dynamics. Five complexities were modelled and plotted against a normalized root-mean-squared error and a normalized global sensitivity. The results verify the hypothesis. A utility function, which minimizes both error and sensitivity, shows that the most complex model is not necessarily the most “useful”. In the case of the lower Saale river, modelling only the phytoplankton–nutrient cycle has almost as much descriptive power as when the complexity is increased by adding the DO–BOD cycle. The low sensitivity of the parameters linking the two cycles also indicates their weak coupling in the Saale river system. This verifies the observations that the source of the organic loading in the Saale has shifted from primary (point load) to secondary (phytoplankton) origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲迎梦发布了新的文献求助10
1秒前
852应助MEME采纳,获得10
1秒前
Godzilla发布了新的文献求助10
1秒前
大模型应助咕噜仔采纳,获得10
2秒前
蒋时晏应助pharmstudent采纳,获得30
2秒前
3秒前
忘羡222发布了新的文献求助20
4秒前
魏伯安发布了新的文献求助10
4秒前
5秒前
不爱吃糖完成签到,获得积分10
5秒前
6秒前
balabala发布了新的文献求助10
7秒前
睿123456完成签到,获得积分10
8秒前
此话当真完成签到,获得积分10
9秒前
11秒前
慕青应助wmmm采纳,获得10
12秒前
科研通AI2S应助夏夏采纳,获得10
12秒前
隐形曼青应助夏夏采纳,获得10
12秒前
睿123456发布了新的文献求助10
12秒前
Godzilla完成签到,获得积分10
12秒前
李健应助ponyy采纳,获得30
12秒前
科研通AI5应助skier采纳,获得10
13秒前
猪猪hero应助Jasen采纳,获得10
14秒前
俭朴的大有完成签到,获得积分10
15秒前
大侠发布了新的文献求助10
15秒前
赵大宝完成签到,获得积分10
15秒前
17秒前
跳跃曼文发布了新的文献求助30
18秒前
18秒前
研友_VZG7GZ应助稀罕你采纳,获得10
18秒前
20秒前
Aries完成签到,获得积分10
22秒前
22秒前
Pretrial完成签到 ,获得积分10
22秒前
Jocelyn7发布了新的文献求助10
23秒前
wmmm发布了新的文献求助10
23秒前
余笙发布了新的文献求助10
24秒前
充电宝应助冷傲迎梦采纳,获得10
24秒前
彭于晏应助qi采纳,获得30
24秒前
科研通AI2S应助shor0414采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824