材料科学
离子电导率
塑料晶体
丁二腈
电解质
准固态
聚合物
复合材料
锂(药物)
化学工程
电极
化学
有机化学
色素敏化染料
工程类
物理化学
内分泌学
医学
相(物质)
作者
Hyo Jeong Ha,Eun Hye Kil,Yo Han Kwon,Je Young Kim,Chang Kee Lee,Sang Young Lee
摘要
A facile approach to fabricate a highly bendable plastic crystal composite electrolyte (PCCE) for use in shape conformable all-solid-state lithium-ion batteries is demonstrated. This strategy is based on integration of a semi-interpenetrating polymer network (semi-IPN) matrix with a plastic crystal electrolyte (PCE, 1 M lithium bis-trifluoromethanesulfonimide in succinonitrile). In comparison to conventional carbonate-based electrolytes, salient benefits of the PCE are the thermal stability and nonflammability, which show promising potential as a safer electrolyte. The semi-IPN matrix in the PCCE is composed of a UV (ultraviolet)-crosslinked ethoxylated trimethylolpropane triacrylate polymer network and polyvinylidene fluoride-co-hexafluoropropylene (as a linear polymer). Solid electrolyte properties of the PCCE are investigated in terms of plastic crystal behavior, mechanical bendability, and ionic transport. Owing to the presence of the anomalous semi-IPN matrix, the PCCE exhibits unprecedented improvement in bendability, along with affording high ionic conductivity. Based on this understanding of the PCCE characteristics, feasibility of applying the PCCE to solid electrolytes for lithium-ion batteries is explored. The facile ionic transport of the PCCE, in conjunction with suppressed growth of cell impedance during cycling, plays a crucial role in providing excellence in cell performance. These advantageous features of the PCCE are further discussed with an in-depth consideration of the semi-IPN matrix architecture and its specific interaction with the PCE.
科研通智能强力驱动
Strongly Powered by AbleSci AI