双晶片
电液伺服阀
执行机构
机械工程
控制理论(社会学)
航空航天
阀门执行机构
扭矩
工程类
计算机科学
控制工程
物理
航空航天工程
电气工程
热力学
人工智能
控制(管理)
作者
Dhinesh Sangiah,Andrew Plummer,Chris Bowen,Paul Guerrier
标识
DOI:10.1177/0959651813478288
摘要
Servovalves are compact, accurate and high-bandwidth modulating valves widely used in aerospace, defence, industrial and marine applications. However, manufacturing costs are high due to high part count and tight tolerances required, particularly in the first stage of the valve, and due to manual adjustments required as part of the set-up process. In this research, a novel servovalve concept is investigated that has the potential to be more cost-effective. In particular, for the first time, a piezoelectric first-stage actuator is developed to move a servovalve spool using the deflector jet principle; this is especially suited to aerospace actuation requirements. In the new valve, the conventional electromagnetic torque motor is replaced by a multilayer bimorph piezoelectric actuator. The bimorph deflects a jet of fluid to create a pressure differential across the valve spool; hence the spool moves. A feedback wire is used to facilitate proportional spool position control via mechanical feedback. The bimorph is directly coupled to the feedback wire and is immersed in hydraulic fluid. A high-order non-linear model of the valve has been developed and used to predict valve static and dynamic characteristics and is described in this article. This makes use of stiffness constants derived analytically for the bimorph-feedback wire assembly and cross-referenced to finite element analysis predictions. The model of the flow force acting on the deflector is an approximation of the force characteristic found from computation fluid dynamic analysis. The measured characteristics of the prototype valve are in good agreement with the simulation results and prove that the operational concept is viable.
科研通智能强力驱动
Strongly Powered by AbleSci AI