乙状窦函数
单变量
超立方体
前馈神经网络
非线性系统
仿射变换
班级(哲学)
数学
集合(抽象数据类型)
物理
前馈
函数逼近
功能(生物学)
人工神经网络
应用数学
算法
拓扑(电路)
计算机科学
离散数学
纯数学
人工智能
多元统计
组合数学
统计
生物
进化生物学
量子力学
控制工程
工程类
程序设计语言
摘要
In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI