材料科学
电子背散射衍射
方向错误
微观结构
打滑(空气动力学)
晶体孪晶
马氏体
极限抗拉强度
体积分数
复合材料
晶界
冶金
结晶学
物理
化学
热力学
作者
Norman Munroe,Xiaoli Tan,Hanyu Gu
标识
DOI:10.1016/s1359-6462(97)00048-1
摘要
The deformation behaviour of electron beam welded commercially pure (CP) Ti and Ti6Al4V joints have been investigated by conducting uniaxial tensile tests. The fusion zone (FZ) consists of low strained needle-like α′ martensite with four axis/angle misorientation peaks which are associated with the formation of certain crystallographic variants of α phase during cooling. The microhardness of the FZ is higher than the CP Ti owing to the presence of α′ martensite and higher volume concentration of alloying elements (Al and V) across the weld. During uniaxial tensile deformation, the failure occurs in the CP Ti side of the welded specimen due to preferential plastic deformation, which is further confirmed by the electron backscatter diffraction (EBSD) analysis. The deformed microstructure of CP Ti is characterized by the formation of 101¯2101¯1¯ extension twins (ET) and 112¯2112¯3¯ compression twins (CT), which lead to the grain fragmentation and subsequent formation of heterogeneous microstructure. Furthermore, the effect of uniaxial tensile loading on the evolution of microstructure and microtexture has been explored through Schmid factor (SF) analysis, performed on basal 0001112¯0, prismatic 101¯0112¯0 and pyramidal 101¯1112¯0 slip systems. The SF analysis reveals that initially, prismatic slip systems played a dominant role during uniaxial deformation owing to their high number fraction of high SF. However, the lack of five independent slip systems to incorporate the induced strain has resulted in the activation of basal slip and the formation of CT and ET twins during deformation. Moreover, the high number fraction of low SF of basal slip system is attributed to the lowering of basal spilt angle in the micro-texture of deformed CP Ti.
科研通智能强力驱动
Strongly Powered by AbleSci AI